Cover image for Ceramic membranes for separation and reaction
Title:
Ceramic membranes for separation and reaction
Personal Author:
Publication Information:
Chichester, England : John Wiley, 2007
ISBN:
9780470014400

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010164190 TP159.M4 L54 2007 Open Access Book Book
Searching...
Searching...
30000003491093 TP159.M4 L54 2007 Open Access Book Book
Searching...

On Order

Summary

Summary

Ceramic Membranes for Reaction and Separation is the first single-authored guide to the developing area of ceramic membranes.

Starting by documenting established procedures of ceramic membrane preparation and characterization, this title then focuses on gas separation. The final chapter covers ceramic membrane reactors;- as distributors and separators, and general engineering considerations.

Chapters include key examples to illustrate membrane synthesis, characterisation and applications in industry. Theoretical principles, advantages and disadvantages of using ceramic membranes under the various conditions are discussed where applicable.


Author Notes

Kang Li is Professor of Chemical Engineering at Imperial College London. His present research interests are in the preparation and characterisation of polymeric and inorganic hollow fibre membranes, fluid separations using membranes, and membrane reactors for energy application and CO2 capture. Kang Li currently leads a research group at Imperial of 2 MSc students, 8 PhD students and 3 post-doctorial research fellows. He has published over 180 research papers in international referred journals, holds five patents, and is the author of a book in the area of ceramic membranes - Ceramic Membranes for Separation and Reaction, John Wiley, 2007 -.


Table of Contents

Chapter 1 Ceramic Membranes and Membrane Processes
1.1 Introduction
1.2 Membrane Processes
1.2.1 Gas separation
1.2.2 Pervaporation
1.2.3 Reverse osmosis and nanofiltration
1.2.4 Ultrafiltration and microfiltration
1.2.5 Dialysis
1.2.6 Electrodialysis
1.2.7 Membrane contactor
1.2.8 Membrane reactors
References
Chapter 2 Preparation of Ceramic Membranes
2.1 Introduction
2.2 Slip casting
2.3 Tape casting
2.4 Pressing
2.5 Extrusion
2.6 Sol-gel process
2.7 Dip-coating
2.8 Chemical vapour deposition (CVD)
2.9 Preparation of hollow fibre ceramic membranes
2.9.1 Preparation of spinning suspension
2.9.2 Spinning of ceramic hollow fibre precursors
2.9.3 Sintering
2.9.4 Example 1: Preparation of porous Al 2 O 3 hollow fibre membranes
2.9.5 Example 2: Preparation of TiO 2 /Al 2 O 3 composite hollow fibre membranes
2.9.6 Example 3: Preparation of dense perovskite hollow fibre membranes
Appendix 2.1 Surface forces
References
Chapter 3 Characterisation of Ceramic Membranes
3.1 Introduction
3.2 Morphology of membrane surfaces and cross sections
3.3 Porous ceramic membranes
3.3.1 Gas adsorption/desorption isotherms
3.3.2 Permporometry
3.3.3 Mercury porosimetry
3.3.4 Thermoporometry
3.3.5 Liquid displacement techniques
(a) Bubble point method
(b) Liquid displacement method
3.3.6 Permeation method
(a) Liquid permeation
(b) Gas permeation
3.3.7 Measurements of solute rejection
3.4 Dense ceramic membranes
3.4.1 Leakage test
3.4.2 Permeation measurements
3.4.3 XRD
3.4.4 Mechanical strength
Notation
References
Chapter 4 Transport and Separation of Gases in Porous Ceramic Membranes
4.1 Introduction
4.2 Performance indicators of gas separation membranes
4.3 Ceramic membranes for gas separation
4.4 Transport Mechanisms
4.4.1 Knudsen and slip flow
4.4.2 Viscous flow
4.4.3 Surface flow
4.4.4 Capillary condensation
4.4.5 Configurational or micropore diffusion
4.4.6 Simultaneous occurrence of different mechanism
4.5 Modification of porous ceramic membranes for gas separation
4.6 Resistance model for gas transport in composite membranes
4.6.1 Effect of support layers
4.6.2 Effect of non-zeolitic pores
4.6.3 Effect of coating
4.7 System design
4.7.1 Operating Schemes
(a) Perfect mixing
(b) Cross flow
(c) Parallel plug flow
4.7.2 Design equations for membrane processes in gas separation
(a) Perfect mixing
(b) Cross flow
(c) Cocurrent flow
(d) Countercurrent flow
Notation
References
Chapter 5 Ceramic Hollow Fibre Membrane Contactors for Treatment of Gases/Vapours
5.1 Introduction
5.2 General review
5.3 Operating modes and mass transfer coefficients
5.3.1 Nonwetted mode
5.3.2 Wetted mode
5.3.3 Mass transfer coefficients determined from experiments
5.4 Mass transfer in hollow fibre contactors
5.4.1 Mass transfer in hollow fibre lumen
5.4.2 Mass transfer across membrane
5.4.3 Mass transfer in shell side of a contactor
5.4.4 Nonwetted, wetted, and partially wetted conditions in a hollow fibre contactor
5.5 Effect of chemical reaction
5.5.1 Instantaneous reaction
5.5.2 Fast reaction
5.6 Design equ