Cover image for Ultrawideband antennas for microwave imaging systems
Title:
Ultrawideband antennas for microwave imaging systems
Personal Author:
Series:
The Artech House antennas and propagation series
Publication Information:
Boston : Artech House, 2014
Physical Description:
ix, 199 pages : illustrations ; 24 cm.
ISBN:
9781608077151
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010335006 TK7871.67.U45 D46 2014 Open Access Book Book
Searching...

On Order

Summary

Summary

" This book presents ultrawideband antennas and their applications on microwave imaging. The chapters focus on recent techniques, analysis, and applications along with the future vision of this emerging field of applied electromagnetics. Several emerging topics are essayed, including dielectric resonator antennas and planar ultrawideband antennas for microwave imaging. This resource incorporates modern design concepts, analysis, and optimization techniques based on recent developments. Readers are also provided with an extensive overview of current regulations, including those related to microwave effects in biological tissues."


Author Notes

Tayeb A. Denidni is a professor at the National Institute of Scientific Research (INRS), Canada. He earned his Ph.D. in electrical engineering from University of Laval.
Gijo Augustin is an antenna researcher at the National Institute of Scientific Research (INRS), Canada. He earned his Ph.D. in microwave engineering from Cochin University of Science and Technology.


Table of Contents

1 Introductionp. 1
1.1 Brief History of Microwavesp. 1
1.2 Overview of Fields and Wavesp. 4
1.2.1 Fieldsp. 4
1.2.2 What Are Waves?p. 5
1.2.3 Fundamental Equationsp. 6
1.3 Antenna Basicsp. 8
1.3.1 The First Antennap. 9
1.3.2 Antenna Characteristicsp. 9
1.4 New Trends in Microwave Imagingp. 14
1.5 Outline of the Bookp. 14
Referencesp. 15
2 Microwave Imaging Systemsp. 17
2.1 The Art of Microwave Imagingp. 17
2.1.1 Types of Reconstructionp. 20
2.2 History and Recent Trendsp. 21
2.3 Interaction of Microwaves with Biological Tissuesp. 25
2.3.1 Dielectric Characteristicsp. 25
2.3.2 Ionization Effectsp. 26
2.3.3 Specific Absorption Rate (SAR)p. 26
2.3.4 Thermal Effectsp. 27
2.4 System Performance Parametersp. 28
2.4.1 Resolutionp. 28
2.4.2 Penetration Depthp. 28
2.4.3 Dynamic Rangep. 28
2.4.4 Contrast Ratiop. 28
2.4.5 Numerical Model Accuracyp. 29
2.5 General Applicationsp. 29
2.5.1 Material Characterizationp. 30
2.5.2 Tomographyp. 30
2.6 Summaryp. 30
Referencesp. 31
3 Ultrawideband Technologyp. 33
3.1 Introductionp. 33
3.2 History of UWB Technologyp. 36
3.3 Importance of UWB Signals and Systemsp. 38
3.3.1 Pulse Waveform for UWB Transmissionp. 39
3.3.2 Meats of UWB Systemsp. 39
3.4 Spectrum Regulationsp. 42
3.5 The Key Role of UWB Antennasp. 42
3.6 Classical Antennas for UWB Systemsp. 45
3.7 UWB System Outlookp. 46
Referencesp. 47
4 Planar Ultrawideband Antennas for Imaging Systemsp. 55
4.1 Overviewp. 55
4.2 A Historical Reviewp. 56
4.2.1 The Period Before the FCC Released the UWB Spectrum (1979-2002)p. 57
4.2.2 The Planar UWB Antennas After the FCC Regulationp. 59
4.3 State-of-the-Art Designs for Microwave Imagingp. 66
4.3.1 Dipole-/Monopole-Based Designsp. 66
4.3.2 State-of-the-Art Designs in Slot-Excited UWB Antennasp. 78
4.4 Industrial Applicationsp. 83
4.5 Design Examplesp. 85
4.5.1 Electronically Reconfigurable Uniplanar Antennap. 85
4.5.2 Uniplanar Polarization Diversity Antenna for UWB Systemsp. 93
4.6 Summaryp. 104
Referencesp. 107
5 Dielectric Resonator Antennas for Microwave imagingp. 115
5.1 Overviewp. 115
5.2 A Historical Reviewp. 116
5.2.1 Wideband Conventional DRA Designsp. 117
5.3 Major Design Challengesp. 119
5.3.1 Miniaturizationp. 119
5.3.2 Bandwidth Enhancementp. 122
5.4 Key Features of Dielectric Resonator Antennasp. 123
5.5 Bandwidth Enhancement Techniquesp. 125
5.5.1 Reduce the Inherent High Q-Factor of the Dielectric Resonatorp. 125
5.5.2 Employing Multiple Resonatorsp. 126
5.5.3 Hybrid Antenna Designsp. 129
5.5.4 Adapting Special Feeding Structuresp. 130
5.6 State-of-the-Art Designs for Microwave Imagingp. 132
5.6.1 Wideband Antennas Based on Conical DRAp. 132
5.6.2 Stair-Shaped DRA for Wideband Applications [94]p. 133
5.6.3 A Compact Hybrid Antenna for Wideband Applicationsp. 133
5.6.4 A Monopole-DRA UWB Antennap. 135
5.7 Industrial Applicationsp. 136
5.7.1 Radar Systemsp. 136
5.7.2 Microwave Medical Imagingp. 136
5.7.3 Determination of Direction of Arrivalp. 136
5.7.4 Unmanned Aerial Vehicles to Ground Station Communicationp. 137
5.8 Advanced Fabrication and Characterization Techniquesp. 137
5.8.1 Dielectric Resonator Materialsp. 137
5.8.2 Tools for DRA Prototypingp. 138
5.9 Design Examplesp. 138
5.9.1 Wideband L-Shaped Dielectric Resonator Antennap. 138
5.9.2 A Monopole-DR Hybrid Antenna for UWB Applicationsp. 146
5.10 Summaryp. 150
Referencesp. 151
6 Ultrawideband Antenna Characterization Techniquesp. 159
6.1 Introductionp. 159
6.2 Classical Methods and Recent Trendsp. 160
6.2.1 Characterization in Frequency Domainp. 160
6.2.2 Time-Domain Characteristicsp. 167
6.3 Advanced Tools and Instrumentsp. 173
6.3.1 Software Solutionsp. 173
6.3.2 Instruments for UWB Antenna Characterizationp. 175
6.4 Measurement Procedures and Guidelinesp. 177
6.4.1 In Frequency Domainp. 177
6.4.2 In Time Domainp. 178
6.5 Summaryp. 179
Referencesp. 179
7 Regulations: Microwave imagingp. 181
7.1 Introductionp. 181
7.2 Review on Microwave Effects in Biological Tissuep. 182
7.2.1 Thermal Effectsp. 182
7.2.2 Nonthermal Effectsp. 183
7.3 International Regulationsp. 185
7.4 Modern Microwave Imaging Systemsp. 186
7.4.1 Biomedical Imaging Systemsp. 186
7.4.2 Ground Penetrating Radar Systemsp. 188
7.5 Summaryp. 189
Referencesp. 189
About the Authorsp. 195
Indexp. 197