Cover image for Microwave and millimeter-wave remote sensing for security applications
Title:
Microwave and millimeter-wave remote sensing for security applications
Series:
Artech House antennas and propagation series
Publication Information:
Boston : Artech House c2012
Physical Description:
xii, 372 p. ill. ; 26 cm.
ISBN:
9781608071722

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010301453 TH9730 N36 2012 Open Access Book Book
Searching...

On Order

Summary

Summary

Microwave and millimeter-wave remote sensing techniques are fast becoming a necessity in many aspects of security as detection and classification of objects or intruders becomes more difficult. This groundbreaking resource offers you expert guidance in this burgeoning area. It provides you with a thorough treatment of the principles of microwave and millimeter-wave remote sensing for security applications, as well as practical coverage of the design of radiometer, radar, and imaging systems. You learn how to design active and passive sensors for intruder detection, concealed object detection, and human activity classification. This detailed book presents the fundamental concepts practitioners need to understand, including electromagnetic wave propagation in free space and in media, antenna theory, and the principles of receiver design. You find in-depth discussions on the interactions of electromagnetic waves with human tissues, the atmosphere and various building and clothing materials. This timely volume explores recently developed detection techniques, such as micro-Doppler radar signatures and correlation radiometry. the book is supported with over 200 illustrations and 1,135 equations.


Author Notes

Jeffrey Nanzer is a senior professional staff member at The Johns Hopkins University Applied Physics Laboratory. He holds an M.S. and a Ph.D. in electrical engineering, both from the University of Texas at Austin.


Table of Contents

Prefacep. xi
Chapter 1 Introductionp. 1
1.1 Security Sensingp. 1
1.1.1 Needs for Remote Security Sensingp. 1
1.1.2 Advantages of Microwave and Millimeter-Wave Remote Sensorsp. 2
1.2 Overview of Remote Sensing Techniquesp. 3
1.2.1 Radiometryp. 3
1.2.2 Radar Systemsp. 4
1.2.3 Imaging Systemsp. 4
1.2.4 Interferometric Angular Velocity Measurementp. 5
1.2.5 Microwave and Millimeter-Wave Remote Sensing in Related Fieldsp. 5
1.3 The Microwave and Millimeter-Wave Spectrump. 7
1.3.1 Frequency Designationsp. 7
1.3.2 Propagation of Microwave and Millimeter-Wave Radiationp. 8
1.4 Examples of Remote Security Sensorsp. 9
1.4.1 Active Imaging for Contraband Detectionp. 10
1.4.2 Passive Imaging for Contraband Detectionp. 10
1.4.3 Detection of Human Presencep. 12
1.4.4 Discrimination of Humans and Classification of Human Activityp. 18
1.4.5 Through-Wall Detectionp. 19
1.4.6 Biological Signature Detectionp. 20
Referencesp. 20
Chapter 2 Electromagnetic Plane Wave Fundamentalsp. 27
2.1 Maxwell's Equationsp. 27
2.1.1 The Constitutive Parametersp. 30
2.2 Time-Harmonic Electromagnetic Fieldsp. 31
2.2.1 The Wave Equationp. 32
2.2.2 Plane Wavesp. 33
2.2.2.1 Phase Velocityp. 34
2.2.2.2 Relationship Between E and Hp. 35
2.2.3 Energy and Powerp. 37
2.3 Wave Polarizationp. 38
2.3.1 Linear Polarizationp. 39
2.3.2 Elliptical Polarizationp. 40
Referencesp. 42
Chapter 3 Electromagnetic Waves in Mediap. 43
3.1 Plane Wave Propagation in Unbounded Mediap. 44
3.1.1 Good Conducting Mediap. 46
3.1.2 Good Dielectric Mediap. 47
3.1.3 Wave Impedance in Mediap. 48
3.1.4 Complex Permittivity and Dispersionp. 48
3.2 Plane Wave Propagation in Bounded Mediap. 51
3.2.1 Reflection and Transmission of Normally Incident Wavesp. 52
3.2.2 Reflection and Transmission of Arbitrarily Incident Wavesp. 54
3.2.2.1 Transverse Electric (Perpendicular) Incidencep. 54
3.2.2.2 Transverse Magnetic (Parallel) Incidencep. 57
3.2.3 Power Reflection and Transmissionp. 58
3.2.4 Total Transmission and Total Reflectionp. 60
3.2.5 Layered Mediap. 61
3.3 Electromagnetic Propagation in Specific Mediap. 63
3.3.1 Atmospheric Propagation Effectsp. 63
3.3.2 Propagation Through Building Materialsp. 69
3.3.3 Propagation Through Clothing and Garment Materialsp. 70
3.3.4 Dielectric Properties of Explosives, Plastics, and Metalsp. 71
3.3.5 Dielectric Properties of Human Tissuep. 72
Referencesp. 81
Chapter 4 Antennasp. 85
4.1 Electromagnetic Potentialsp. 86
4.1.1 Electromagnetic Potentials Due to Electric Current Density Jp. 86
4.1.2 Electromagnetic Potentials Due to Magnetic Current Density J mp. 88
4.1.3 Infinitesimal Dipole Radiationp. 89
4.1.4 Far Field Radiationp. 90
4.1.5 Infinitesimal Dipole Far-Field Radiationp. 94
4.2 Antenna Parametersp. 95
4.2.1 Radiated Power Density and Total Radiated Powerp. 95
4.2.2 Antenna Patternp. 96
4.2.3 Antenna Pattern Beamwidthp. 97
4.2.4 Antenna Solid Anglesp. 99
4.2.5 Directivityp. 99
4.2.6 Gainp. 101
4.2.7 Aperture Area and Pattern Solid Anglep. 102
4.2.8 Antenna Temperature and Noise Powerp. 103
4.2.9 Polarizationp. 103
4.3 Properties of Wire Antennasp. 104
4.3.1 Infinitesimal Dipolep. 104
4.3.2 Long Dipolep. 105
4.4 Aperture Antennasp. 107
4.4.1 Image theoryp. 108
4.4.2 The Equivalence Principlep. 109
4.4.3 Radiation from a Rectangular Aperturep. 111
4.4.4 Radiation from a Circular Aperturep. 115
4.5 Antenna Arraysp. 117
4.5.1 Linear Array Theoryp. 118
4.5.2 Planar Arraysp. 121
4.5.3 Array Beamwidthp. 122
4.5.4 Phased Arraysp. 123
4.5.5 Array Architecturesp. 125
4.5.5.1 Signal Feedsp. 125
4.5.5.2 Beam Steeringp. 127
4.6 Common Microwave and Millimeter-Wave Antennasp. 128
4.6.1 Horn Antennasp. 128
4.6.2 Slot Antennasp. 131
4.6.3 Microstrip Antennasp. 132
4.6.4 Reflector Antenna Systemsp. 134
4.6.5 Lens Antenna Systemsp. 136
Referencesp. 137
Chapter 5 Receiversp. 139
5.1 General Operation of Receiversp. 140
5.2 Receiver Noisep. 143
5.2.1 Sources of Receiver Noisep. 144
5.2.1.1 Thermal Noisep. 144
5.2.1.2 Shot Noisep. 145
5.2.1.3 Flicker Noisep. 146
5.2.2 Equivalent Noise Bandwidthp. 146
5.2.3 Thermal Noise at Millimeter-Wave Frequenciesp. 148
5.3 Noise Figure and Noise Temperaturep. 150
5.3.1 Noise Figurep. 150
5.3.2 Noise Temperaturep. 152
5.3.3 Noise Figure of an Attenuatorp. 153
5.3.4 Noise in Cascaded Systemsp. 154
5.3.5 ADC Noisep. 157
5.4 Receiver Linearityp. 160
5.4.1 Gain Compressionp. 162
5.4.2 Intermodulation Productsp. 164
5.4.3 Third Order Intercept Pointp. 166
5.4.4 Intercept Point of a Cascadep. 168
5.4.5 Dynamic Rangep. 168
5.4.6 Spurious Free Dynamic Rangep. 170
Referencesp. 171
Chapter 6 Radiometryp. 173
6.1 Radiometry Fundamentalsp. 174
6.1.1 Brightnessp. 174
6.1.2 Brightness and Distancep. 176
6.1.3 Flux Density and Source Distributionp. 178
6.1.4 Effect of the Antennap. 179
6.2 Blackbody Radiationp. 180
6.2.1 Planck's Blackbody Radiation Lawp. 180
6.2.2 Approximations of Planck's Lawp. 184
6.2.3 Band-Limited Integration of Planck's Lawp. 185
6.3 Applied Radiometryp. 187
6.3.1 Source Resolutionp. 188
6.3.1.1 Resolved Sourcep. 188
6.3.1.2 Unresolved Sourcep. 189
6.3.2 Received Power as a Convolutionp. 190
6.3.3 Emissivity and Radiometric Temperaturep. 191
6.3.3.1 Emissivities of Human Skin and Common Materialsp. 192
6.3.3.2 Radiometric Temperature in an Environmentp. 194
6.4 Radiometer Receiversp. 196
6.4.1 Sensitivityp. 197
6.4.2 Total Power Radiometerp. 200
6.4.2.1 Total Power Responsep. 200
6.4.2.2 Sensitivityp. 201
6.4.3 Interferometric Correlation Radiometerp. 206
6.4.3.1 Spatial Point Source Responsep. 207
6.4.3.2 Sensitivityp. 212
6.5 Practical Considerationsp. 215
6.5.1 Receiver Instabilitiesp. 215
6.5.2 Dicke Radiometerp. 215
6.5.3 Radiometer Calibrationp. 217
6.6 Scanning Radiometer Systemsp. 218
6.6.1 Spatial Resolutionp. 219
6.6.2 Dwell Timep. 222
6.6.3 Measurement Uncertaintyp. 223
6.6.3.1 One-Dimensional Scanningp. 223
6.6.3.2 Two-Dimensional Scanningp. 225
Referencesp. 226
Chapter 7 Radarp. 229
7.1 Radar Fundamentalsp. 230
7.1.1 Configurations and Measurementsp. 231
7.1.2 Range Equationp. 233
7.2 Transmitter Systemsp. 236
7.2.1 Transmitter Functionalityp. 236
7.2.2 Transmitter Noisep. 239
7.2.3 Millimeter-Wave Oscillatorsp. 241
7.3 Radar Measurement Sensitivityp. 243
7.3.1 Measurement Errorp. 243
7.3.1.1 Range Measurement Errorp. 244
7.3.1.2 Frequency Measurement Errorp. 245
7.3.1.3 Angle Measurement Errorp. 245
7.3.1.4 Examplep. 245
7.3.2 Impact of the Time-Bandwidth Product on Measurement Errorp. 251
7.4 Micro-Dopplerp. 253
7.4.1 Micro-Doppler in Security Radarp. 254
7.4.2 Micro-Doppler Theoryp. 255
7.4.3 Human Micro-Doppler Signaturep. 260
7.5 Continuous-Wave Radarp. 266
7.5.1 Continuous-Wave Dopplerp. 267
7.5.2 Frequency-Modulated CWp. 271
7.5.3 Multifrequency CWp. 274
7.5.4 Moving Target Indication Radarp. 275
7.6 High-Range Resolution Radarp. 279
7.6.1 Pulse Radarp. 280
7.6.2 Linear Frequency Modulationp. 282
7.6.3 Stepped-Frequency Modulationp. 285
Referencesp. 286
Chapter 8 Imaging Systemsp. 289
8.1 Scanning Imaging Systemsp. 291
8.1.1 Types of Scanning Imagersp. 291
8.1.2 General Characteristics of Scanning Systemsp. 292
8.1.2.1 Field of View and Spatial Resolutionp. 292
8.1.2.2 Frame Ratep. 294
8.2 Interferometric Imaging Systemsp. 295
8.2.1 Introductionp. 295
8.2.2 Image Formationp. 296
8.2.2.1 Visibility Functionp. 297
8.2.2.2 Fourier Transform Relationship of Visibility and Radiometric Temperaturep. 299
8.2.2.3 The Correlation Interferometer as a Spatial Filterp. 301
8.2.3 Visibility Samplingp. 303
8.2.4 Two-Dimensional Visibilityp. 308
8.2.5 Image Sensitivityp. 309
8.2.6 Image Resolution and Field of Viewp. 312
8.2.7 Interferometric Imaging Arraysp. 318
8.2.7.1 Mills Cross Arrayp. 319
8.2.7.2 T-Arrayp. 321
8.2.7.3 Y-Arrayp. 322
8.2.7.4 Circular Arraysp. 323
Referencesp. 325
Chapter 9 Interferometric Measurement of Angular Velocityp. 329
9.1 Interferometer Response to an Angularly Moving Point Sourcep. 330
9.1.1 System Beam Patternp. 331
9.1.2 Frequency Shift Induced by an Angularly Moving Objectp. 332
9.1.3 Comparison to Doppler Frequency Shiftp. 333
9.1.4 Frequency Uncertainty at Wide Anglesp. 335
9.1.5 Small Angle Approximationp. 335
9.2 Interferometer Spectral Responsep. 336
9.2.1 General Spectral Responsep. 336
9.2.2 Response with a Sinc Function System Beam Patternp. 337
9.2.3 Interferometer Response in the Time-Frequency Domainp. 341
9.3 Interferometric Measurement of Moving Humansp. 344
9.3.1 Narrow-Beamwidth Response to a Moving Humanp. 344
9.3.2 Wide-Beamwidth Response to a Moving Humanp. 346
Referencesp. 349
List of Symbolsp. 351
List of Abbreviations and Acronymsp. 355
About the Authorp. 357
Indexp. 359