Cover image for Microwave circulator design
Title:
Microwave circulator design
Personal Author:
Series:
Artech House microwave library
Edition:
2nd ed.
Publication Information:
Norwood, Mass. : Artech House, c2014
Physical Description:
xv, 364 p. : ill. ; 24 cm.
ISBN:
9781608075836

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010330456 TK7871.65 L56 2014 Open Access Book Book
Searching...

On Order

Summary

Summary

This title contains a discussion of the various units used in the circulator design computations as well as covering the theory of operation. It presents numerous applications, giving microwave engineers new ideas about how to solve problems using circulators.


Author Notes

Douglas K. Linkhart has over 30 years of engineering experience with microwave circulators. He earned his A.S. in physics from Brookdale Community College in New Jersey, BSCS from Thomas Edison State College in New Jersey, and MBA from the University of South Florida.


Table of Contents

Prefacep. xi
Acknowledgmentsp. xv
1 Theory of Operationp. 1
1.1 Units, Conversions, and Symbolsp. 1
1.2 The Physical Basis of Ferrimagnetismp. 4
1.3 Ferrimagnetic Resonancep. 11
1.4 Microwave Propagation in Ferritesp. 15
1.5 Other Technologiesp. 29
1.5.1 Semiconductor Circulatorsp. 29
1.5.2 Nanotechnology Circulatorsp. 30
1.5.3 Thin Ferrite Filmsp. 31
1.5.4 Active Circulatorsp. 32
2 Circulator Specificationp. 35
2.1 The Parametersp. 35
2.2 Reflections and Segmentationp. 48
2.3 Junction Circulatorsp. 52
2.3.1 Single-Ferrite (Non-Composite) Junction Circulatorsp. 54
2.3.2 Composite-Ferrite Junction Circulatorsp. 56
2.4 Lumped-Constant Circulatorsp. 56
2.5 Differential Phase Shift Circulatorsp. 58
2.6 Switching Circulatorsp. 60
2.7 Okada Circulatorsp. 61
2.8 Field-Displacement Isolatorsp. 61
2.9 Resonance Isolatorsp. 64
3 Applications of Circulatorsp. 69
3.1 Load Isolationp. 69
3.2 Duplexingp. 71
3.3 Multiplexingp. 76
3.4 Parametric Amplifiersp. 77
3.5 Phase Shiftingp. 81
4 Material Selectionp. 87
4.1 Ferritesp. 87
4.1.1 Ferrite Classesp. 87
4.1.2 Ferrite Manufacturingp. 88
4.1.3 Design Considerationsp. 90
4.1.4 Test Methodsp. 91
4.1.5 Specificationsp. 93
4.1.6 Temperature Effectsp. 93
4.1.7 Ferrite Selectionp. 96
4.2 Magnet Selectionp. 100
4.3 Magnetic Compensating Material Selectionp. 102
4.4 Dielectric Selectionp. 103
4.5 Metals Selectionp. 104
5 Electrical Designp. 107
5.1 Junction Circulatorsp. 107
5.1.1 Basic Principlesp. 107
5.1.2 Historical Papersp. 111
5.1.3 Above-Resonance Approximationsp. 125
5.1.4 Below-Resonance Approximationsp. 130
5.1.5 Network Synthesisp. 132
5.1.6 Center Conductor Geometriesp. 143
5.1.7 Waveguide Junction Geometriesp. 149
5.1.8 Stripline Circulator Synthesis Algorithmp. 153
5.1.9 Microstrip Circulator Synthesis Algorithmp. 157
5.1.10 Waveguide Junction Circulator Synthesis Algorithmp. 161
5.1.11 Okada Circulatorsp. 163
5.1.12 Circulators Having Composite Ferritesp. 165
5.2 Lumped-Constant Circulatorsp. 167
5.3 Differential Phase Shift Circulatorsp. 171
5.4 Resonance Isolatorsp. 177
5.5 Dummy Loads for Isolatorsp. 179
5.6 Temperature Effectsp. 181
5.7 Intermodulation Distortionp. 186
5.8 RF Power Effectsp. 187
5.8.1 Steady-State Thermal Effectsp. 187
5.8.2 Transient Thermal Effectsp. 191
5.8.3 Voltage Breakdownp. 193
5.8.4 Spin-Wave Instabilityp. 198
6 Magnetic Designp. 205
6.1 Magnet Sizingp. 205
6.1.1 Ferrite Demagnetization Factorsp. 207
6.1.2 Leakage Flux Approximationp. 213
6.1.3 Approximate Design of Magnetic Circuitsp. 214
6.1.4 Simulation of Magnetic Circuitsp. 217
6.2 Shieldingp. 219
6.3 Temperature Compensationp. 221
6.4 Completing the Circuitp. 223
6.5 Special Casesp. 225
6.5.1 Switching Circulatorsp. 225
6.5.2 Self-Biased Circulatorsp. 228
6.5.3 Considerations for Microstrip Circulatorsp. 228
7 Mechanical Designp. 231
7.1 Thermal Considerationsp. 231
7.1.1 Stripline Power Handlingp. 231
7.1.2 Power Dissipation in Ferritesp. 233
7.1.3 Cooling of Ferritesp. 234
7.2 Ventingp. 235
7.3 Coaxial Junction Circulatorsp. 237
7.3.1 Packaging Techniquesp. 237
7.3.2 Dimensional Tolerancesp. 242
7.3.3 Controlling Cavity Resonancesp. 244
7.3.4 Transitionsp. 249
7.3.5 RFI Controlp. 253
7.3.6 Dissimilar Metalsp. 253
7.3.7 Finishesp. 253
7.4 Lumped-Constant Circulatorsp. 254
7.5 Waveguide Circulatorsp. 256
7.6 Resonance Isolatorsp. 258
8 Assembly and Testingp. 261
8.1 Assembly Techniquesp. 261
8.2 Testingp. 268
8.2.1 Finding the Operating Pointp. 268
8.2.2 Taking Datap. 271
8.2.3 RF Power Testingp. 272
8.2.4 Inter modulation Testingp. 272
8.2.5 Multipaction Testingp. 273
8.2.6 Magnetic Moment Measurementp. 275
8.2.7 Measurement Uncertainty and Gauge Studiesp. 276
9 Tuningp. 281
9.1 Interaction Between Magnetic and Electrical Adjustmentsp. 281
9.2 Magnetic Adjustmentp. 281
9.2.1 Above-Resonance Magnetic Adjustmentp. 282
9.2.2 Below-Resonance Magnetic Adjustmentp. 283
9.2.3 Magnet Charging, Calibration, and Stabilizationp. 283
9.3 Electrical Adjustmentp. 285
9.4 Eigenvalue Evaluationp. 295
10 Design Examplesp. 301
10.1 Introduction to Examplesp. 301
10.2 Above-Resonance Stripline Junction Circulatorp. 302
10.3 Below-Resonance Stripline Junction Circulatorp. 311
10.4 Waveguide Junction Circulatorp. 319
10.5 Microstrip Circulatorp. 324
10.6 Differential Phase Shift Circulatorp. 329
10.7 Lumped-Constant Circulatorp. 333
List of Symbolsp. 339
Frequently Used Equationsp. 347
About the Authorp. 351
Indexp. 353