Cover image for Sensing with terahertz radiation
Title:
Sensing with terahertz radiation
Publication Information:
New York : Springer, 2003
Physical Description:
xvi, 337 p. : ill. ; 24 cm.
ISBN:
9783540431107
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010210892 TK8360.O67 S46 2003 Open Access Book Book
Searching...

On Order

Summary

Summary

One aspect of the field of THz radiation is the marriage of microwave and optical techniques. By its very nature, THz radiation bridges the gap be­ tween the microwave and optical regimes. The former can be characterized by the fact that most devices are comparable in size to the wavelength of the radiation. As a result, the propagation of energy in these devices is generally in the form of single-mode or low-order-mode guided waves. In contrast, the optical and infrared ranges are generally characterized by beams containing many modes, with dimensions much larger than the wavelength. Of course, there are exceptions to these rules, notably the single-mode propagation of optical radiation in fibers. Nonetheless, the general description holds true. Because of these fundamental differences, it is natural that the techniques used in their implementation are quite distinct. Much of the research in the THz field has been based on the melding of these disparate ideas.


Table of Contents

Daniel R. Grischkowsky and Daniel MittlemanFrank C. De LuciaDaniel MittlemanZhiping Jiang and Xi-Cheng ZhangSean M. Duffy and Simon Verghese and K. Alex McIntoshR. Alan Cheville and Matthew T. Reiten and Roger McGowan and Daniel R. GrischkowskyMartin KochDaniel W. van der Weide
Introductionp. 1
Spectroscopy in the Terahertz Spectral Regionp. 39
1 Introductionp. 39
1.1 Radiation and Matterp. 40
1.2 What Phenomena Fall in this Energy Range?p. 40
1.3 Gasesp. 41
1.4 Liquids and Solidsp. 43
1.5 Applications and Impact of Terahertz Spectroscopyp. 43
2 Theoretical Underpinningsp. 45
2.1 Absorption Strengthsp. 45
2.2 Energy Levels and Transitions Frequenciesp. 47
2.3 The Character of Rotational Spectrap. 47
2.4 Rotation-Vibration Spectrap. 49
3 Spectroscopic Techniques and Resultsp. 51
3.1 Harmonic Generationp. 53
3.2 Sources Based on Mixing of Optical Sourcesp. 61
3.3 Tunable Sideband Sourcesp. 65
3.4 Electron Beam Sourcesp. 68
3.5 Femtosecond Sourcesp. 73
4 Applicationsp. 76
4.1 Atmospheric Spectroscopyp. 76
4.1.1 Microwave-Like Instrumentsp. 78
4.1.2 Infrared-Like Instrumentsp. 85
4.2 Astronomical Spectroscopyp. 87
4.2.1 Some Telescope Facilitiesp. 90
4.2.2 Two Representative THz Telescopesp. 90
4.2.3 Examples of Other Resultsp. 99
Acknowledgmentsp. 107
Referencesp. 107
Terahertz Imagingp. 117
1 Introductionp. 117
2 Key Components of a THz Imaging Systemp. 118
2.1 The Femtosecond Laser Sourcep. 119
2.2 Optical Delay Linep. 119
2.3 Terahertz Optoelectronic Switchesp. 120
2.4 Terahertz Beam Opticsp. 123
2.5 Polarization of the THz Beamp. 128
2.6 Signal Acquisitionp. 129
2.7 Data Processingp. 130
3 Imaging with THz-TDSp. 131
3.1 Amplitude and Phase Imagingp. 132
3.2 Terahertz Imaging of Liquid Waterp. 137
3.3 Processing for Amplitude and Phase Imagingp. 139
3.4 Reflection Imagingp. 139
3.5 Burn Diagnosticsp. 141
3.6 Terahertz Tomography: The Third Dimensionp. 143
3.7 Interferometric Tomographyp. 145
4 Future Prospectsp. 149
Referencesp. 149
Free-Space Electro-Optic Techniquesp. 155
1 Introductionp. 155
2 Generationp. 155
3 Detectionp. 159
3.1 Measurement Principlep. 161
3.2 Measurement of Coherent Mid-Infrared Fieldsp. 165
3.3 Parallel Measurement: Chirped-Pulse Measurementp. 165
3.4 Parallel Measurement: Terahertz Streak Camerap. 168
3.5 Parallel Measurement: 2D Imagingp. 171
3.6 Near-Field Terahertz Imagingp. 174
3.7 Detection Geometry and Working Conditionsp. 175
3.8 Comparison Between Photoconductive Sampling and EO Samplingp. 177
3.9 EO Sampling for Continuous-Wave Terahertz Beamsp. 178
4 Applicationsp. 178
4.1 Dynamics of Interaction of Lattice with Infrared Photonsp. 178
4.2 Spatiotemporal Coupling of Few-Cycle Pulsesp. 180
4.3 Point Scanning Terahertz Imagingp. 182
4.4 Electro-Optic Terahertz Transceiverp. 185
4.5 Compact Systemp. 186
Referencesp. 187
Photomixers for Continuous-Wave Terahertz Radiationp. 193
1 Introductionp. 193
1.1 Demonstrated CW Technology for Terahertz Generationp. 194
2 Photomixers: Principle of Operationp. 194
2.1 Overview of Operationp. 195
2.2 Lifetime of Carriersp. 198
2.2.1 Lifetime Modified by Electric Field Profilep. 201
2.3 External Quantum Efficiencyp. 202
2.4 Thermal Limitsp. 205
2.4.1 Improved Thermal Designs: Thin LTG GaAs on AlAsp. 207
2.4.2 Improved Thermal Designs: Optically Resonant Cavity (DBR)p. 208
2.5 Trade-offs for Enhanced Output Powerp. 209
2.6 Proven High-Power Methodsp. 211
3 Planar Antennas and Circuitryp. 213
3.1 Electrode Capacitancep. 213
3.2 Log-Spiralp. 215
3.3 Single Full-Wave Dipolesp. 215
3.4 Dual-Antenna Elementsp. 216
3.4.1 Dual-Dipole Elementsp. 216
3.4.2 Graphical Design Procedurep. 218
3.4.3 Dual-Slot Elementsp. 220
3.5 Distributed Photomixersp. 221
4 Hyperhemisphere Lensp. 222
5 Photomixer Design and Examplesp. 224
5.1 Dual-Dipole Resultsp. 224
5.2 Practical Measurement Issues and Power Calibration Difficultiesp. 226
5.3 Maximum Power Limitationsp. 227
6 Applicationsp. 230
6.1 Local Oscillatorsp. 230
6.2 Transceiversp. 230
Acknowledgmentsp. 233
Referencesp. 233
Applications of Optically Generated Terahertz Pulses to Time Domain Ranging and Scatteringp. 237
1 Introductionp. 237
1.1 Perspectivep. 237
1.2 Theoryp. 238
1.3 Measurementsp. 241
1.4 Outlinep. 244
2 Experimentp. 244
2.1 Overview of Experimental Configurationsp. 244
2.2 Generation and Detection of Terahertz Electromagnetic Transientsp. 246
2.3 Terahertz Beam Optics for Target Illuminationp. 251
2.4 Targetsp. 254
2.5 Scattered Radiationp. 255
2.6 Bistatic Rangep. 256
3 Theoryp. 257
3.1 Scaling of Maxwell's Equations in Terahertz Impulse Rangingp. 258
3.2 Transfer Function Description of Terahertz Impulse Ranging Systemp. 259
3.3 Calculation in Time and Frequencyp. 262
3.4 Calculation of Scattering Coefficientsp. 264
3.4.1 Cylindersp. 264
3.4.2 Spheresp. 265
4 Measurementsp. 267
4.1 Conducting and Dielectric Cylindersp. 267
4.2 Dielectric Spheresp. 272
4.3 Data Analysis and the Geometrical Optics Modelp. 273
4.4 Angularly Resolved Scattering Measurementsp. 281
4.5 Gouy Phase Shiftp. 285
4.6 Realistic Targetsp. 287
5 Summary and Future Directionsp. 289
Referencesp. 290
Bio-medical Applications of THz Imagingp. 295
1 Introductionp. 295
1.1 Some General Remarks Regarding Biomedical Imagingp. 295
1.2 The Closure of the Terahertz Gapp. 297
2 Description of the Terahertz Imaging Setupp. 298
3 Dendrochronology: Density Mapping of Woodp. 300
4 Plant Physiology: Monitoring the Water Flow in Plantsp. 303
4.1 Clematisp. 305
4.2 Mimosap. 307
5 Medical Imaging on Histopathological Samplesp. 308
5.1 Time-Domain Imagingp. 309
5.2 Continuous-Wave Imagingp. 311
6 Conclusionp. 312
Acknowledgmentsp. 312
Referencesp. 313
Electronic Sources and Detectors for Wideband Sensing in the Terahertz Regimep. 317
1 Introductionp. 317
2 Dual-Source Interferometerp. 320
3 Description of DSIp. 321
4 Analysis of Dual-Source Interferometerp. 322
5 DSI Results from Dual-Source Interferometerp. 324
6 Reflection Spectroscopyp. 325
7 Coherent Signal Generation with Scanned Delay Linesp. 328
8 Conclusionsp. 331
Acknowledgmentsp. 331
Referencesp. 331
Indexp. 335