Cover image for Boundary element analysis of cracks in shear deformable plates and shells
Title:
Boundary element analysis of cracks in shear deformable plates and shells
Personal Author:
Series:
Topics in engineering ; 43
Publication Information:
Southampton, UK : WIT Press, 2002
Physical Description:
250 p. : ill. ; 25 cm.
ISBN:
9781853129506

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010167328 TA660.P6 D57 2002 Open Access Book Book
Searching...

On Order

Summary

Summary

Illustrated throughout, this book presents a new set of boundary element formulations for the solution of bending problems in plates and shells. The book is part of the Topics in Engineering series.


Table of Contents

Prefacep. ix
List of Notationsp. xv
Chapter 1 Introductionp. 1
1.1 Generalp. 1
1.2 Numerical Models for Fracture Mechanics Analysis of Plates and Shellsp. 5
1.3 Overview of the Present Workp. 7
Chapter 2 Basic Conceptsp. 9
2.1 Introductionp. 9
2.2 Basic Definitions of Shallow Shellsp. 9
2.3 Governing Equations of Shallow Shellsp. 12
2.3.1 Strain-displacement relationshipsp. 12
2.3.2 Stress resultants and stress couplesp. 14
2.3.3 Equilibrium equationsp. 17
2.3.4 Stress resultant-strain relationshipsp. 19
2.3.5 Stress resultant-displacement relationshipsp. 20
2.3.6 Equilibrium equations in term of displacementsp. 20
2.4 Governing Equations of Flat Platesp. 21
2.4.1 Stress resultants and stress couplesp. 21
2.4.2 Strain-displacement relationshipsp. 22
2.4.3 Equilibrium equationsp. 22
2.4.4 Stress resultant-strain relationshipsp. 23
2.4.5 Equilibrium equations in terms of displacementsp. 24
2.5 Basic Concepts of Fracture Mechanicsp. 24
2.5.1 Crack tip elastic fieldsp. 25
2.5.2 Stress resultant intensity factors evaluationp. 27
2.5.3 J-integralp. 29
2.5.4 Fatigue crack growthp. 30
2.5.5 Crack growth directionp. 31
2.6 Note on Classical Plate and Shell Theoriesp. 31
2.7 Summaryp. 33
Chapter 3 The Boundary Element Methodp. 35
3.1 Introductionp. 35
3.2 The Integral Representationsp. 37
3.2.1 Rotations and out-of-plane displacement integral representationsp. 39
3.2.2 Fundamental solutionsp. 43
3.2.3 In-plane displacements integral representationsp. 44
3.2.4 Fundamental solutionsp. 47
3.3 Boundary Integral Equationsp. 47
3.4 Numerical Implementationp. 50
3.4.1 Discretisationp. 50
3.4.2 Treatment of singularitiesp. 54
3.4.3 Boundary conditionsp. 55
3.5 Transformation of Domain Integralsp. 56
3.6 Internal Stress Resultantsp. 59
3.7 Evaluation of Boundary Stress Resultantsp. 61
3.8 Boundary Integrals of Shear Deformable Plate Bending and Two-Dimensional Plane Stressp. 63
3.9 Numerical Examplesp. 64
3.9.1 Circular shallow spherical shells: uniformly loadedp. 64
3.9.2 Circular shallow spherical shells with a hole in the centrep. 68
3.9.3 A simply supported square shallow spherical shell: uniformly loadedp. 70
3.9.4 A simply supported square shallow cylindrical shell: uniformly loadedp. 76
3.9.5 A rectangular plate with a rectangular openingp. 78
3.10 Summaryp. 81
Chapter 4 Hypersingular Integral Equationsp. 83
4.1 Introductionp. 83
4.2 Hypersingular Integral Equations for Shear Deformable Shallow Shellsp. 83
4.3 The Traction Integral Equationsp. 86
4.4 Evaluation of Domain Integrals Using the Dual Reciprocity Techniquep. 87
4.5 Numerical Implementationp. 89
4.5.1 Treatment of singularitiesp. 91
4.6 Traction Integral Equations of Shear Deformable Plate Bending and Two-Dimensional Plane Stressp. 93
4.7 Summaryp. 94
Chapter 5 The Dual Boundary Element Methodp. 97
5.1 Introductionp. 97
5.2 The Dual Boundary Integral Equationsp. 97
5.2.1 Shallow shell problemsp. 98
5.2.2 Plate bending and tension problemsp. 105
5.3 Numerical Implementationp. 106
5.3.1 Crack modelling strategyp. 106
5.3.2 Special crack-tip elementsp. 108
5.3.3 Discretisation strategyp. 108
5.3.4 Modelling consideration of the dual reciprocity techniquep. 109
5.3.5 Treatment of the singularitiesp. 110
5.4 Stress Resultant Intensity Factors Evaluationp. 110
5.4.1 The crack surface displacements extrapolation technique (CSDE)p. 111
5.4.2 The J-integral techniquep. 112
5.5 Numerical Examplesp. 115
5.5.1 A rectangular plate with a centre crack loaded by bending and tensionp. 115
5.5.2 A simply supported square plate with a centre crack: uniform pressurep. 118
5.5.3 A plate with symmetric double edge cracksp. 120
5.5.4 A plate with an edge crackp. 123
5.5.5 A single crack emanating from a hole in a finite width platep. 123
5.5.6 Two symmetric cracks emanating from a hole in a finite width platep. 125
5.5.7 An infinite plate with a slant centre crack loaded by bending and bi-axial tensionp. 130
5.5.8 Clamped and simply supported square spherical shells with a centre crack: uniformly loadedp. 133
5.5.9 Clamped and simply supported square cylindrical shells with a centre crack: uniformly loadedp. 140
5.5.10 Symmetric cracks emanating from a hole in a square cylindrical shellp. 148
5.6 Summaryp. 148
Chapter 6 Crack Growth Simulationp. 151
6.1 Introductionp. 151
6.2 Crack Growth Simulationp. 152
6.2.1 Crack propagation directionp. 153
6.2.2 Fatigue life predictionp. 155
6.2.3 Multiple cracks growth simulationp. 156
6.2.4 Computational procedurep. 157
6.3 Numerical examplesp. 158
6.3.1 A rectangular plate with a centre crack loaded by bending and tensionp. 158
6.3.2 An infinite plate with a slant centre crack loaded by bending and bi-axial tensionp. 160
6.3.3 A rectangular plate with symmetric edge cracks loaded by torsion and tensionp. 162
6.3.4 Multiple site damage problem of a plate with three holesp. 164
6.3.5 Crack propagation in a cylindrical shellp. 169
6.3.6 Crack propagation in a spherical shellp. 172
6.4 Summaryp. 177
Chapter 7 A Multi-Domain BEM Formulation for Assembled Plate-Structuresp. 179
7.1 Introductionp. 179
7.2 Multi-Region Formulation of Plate Structurep. 179
7.3 Numerical Examplesp. 182
7.3.1 A cantilever plate with variable thickness and modulus of elasticityp. 183
7.3.2 An L-shape plate structurep. 184
7.3.3 A cantilever box subjected to bending and torsionp. 186
7.3.4 A quarter of a long cylinder, clamped and loaded by internal pressurep. 189
7.3.5 A cantilever box with a centre crack on the upper skin, subjected to bendingp. 190
7.4 Summaryp. 193
Chapter 8 Conclusions and Future Workp. 195
8.1 Conclusionsp. 195
8.2 Future Researchp. 197
Referencesp. 198
Appendix A Evaluation of Modified Bessel Functionsp. 211
A.1 Polynomial Approximations of I[subscript 0] (x)p. 211
A.2 Polynomial Approximations of I[subscript 1] (x)p. 212
A.3 Polynomial Approximations of K[subscript 0] (x)p. 213
A.4 Polynomial Approximations of K[subscript 1] (x)p. 213
Appendix B The Limits and Jump Terms of the Integral Equations for Shallow Shellsp. 215
B.1 The Displacement Integral Equationsp. 215
B.2 The Bending Stress Resultant Integral Equationsp. 217
B.3 The Shear Stress Resultant Integral Equationp. 220
B.4 The Membrane Stress Resultant Integral Equationsp. 222
Appendix C Treatment of Singularitiesp. 227
C.1 Bi-cubic Nonlinear Coordinate Transformationp. 227
C.2 Singularity SubstractionMethodp. 228
C.2.1 Strongly singular integralsp. 228
C.2.2 Hypersingular integralsp. 232
C.3 Analytical Integration of Membrane Fundamental Solutionsp. 237
C.4 Triangle to Square Transformationp. 238
Appendix D Particular solutionsp. 241
D.1 Particular solutions for two-dimensional plane stressp. 241
D.2 Particular solutions for plate bendingp. 243
Appendix E Decompositions for the J- Integral Techniquep. 247