Skip to:Content
|
Bottom
Cover image for Minimally invasive medical technology
Title:
Minimally invasive medical technology
Series:
Series in medical physics
Publication Information:
New York, NY : Institute of Physics Publishing, 2001
Physical Description:
xviii, 316 p. : ill. ; 24 cm.
ISBN:
9780750307338
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010198969 RD33.53 M58 2001 Open Access Book Book
Searching...

On Order

Summary

Summary

Minimally invasive medicine has the goal of providing health care with minimal trauma. When minimally invasive surgery is utilized, it reduces the length of hospital stays, lowers costs, lowers pain, and reduces blood loss. Other minimally invasive techniques minimize radiation exposure, tissue damage, and drug side effects.

Collecting contributions from workers in various fields within the sphere of minimally invasive medical technology, this book provides essential information for those involved with researching, designing, and using minimally invasive devices and systems. It emphasizes the technology required to accomplish minimally invasive medicine. The book will be of interest to biomedical engineers, medical physicists, and health care providers who want to know the technical workings of their devices and instruments.


Author Notes

John G Webster Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA


Table of Contents

Hong CaoHong CaoHong CaoDean H SkuldtDean H SkuldtDean H SkuldtAlberto Rodriguez-RiveraAlberto Rodriguez-RiveraAlberto Rodriguez-RiveraXu LiXu LiOliver WiebenOliver WiebenGlenn WalkerSupan TungjitkusolmunJohn G WebsterG H Olivera and J M Kapatoes and K J Ruchala and P J Reckwerdt and E E Fitchard and H Keller and J P Balog and T R MackieJohn R Goomey
Prefacep. xvii
1 Chemical Sensorsp. 1
1.1 Objects of measurementp. 1
1.1.1 Objects of chemical measurementp. 1
1.1.2 Requirement of chemical-measurement sensorp. 2
1.1.3 Placement of sensorsp. 2
1.2 Electrochemical sensorsp. 3
1.2.1 Electrode potentialp. 3
1.2.2 Potentiometric sensorsp. 5
1.2.3 Amperometric measurementp. 7
1.2.4 Electrochemical gas sensorsp. 9
1.3 Fiber-optic chemical sensorsp. 10
1.3.1 Spectrophotometric analysis and Beer's Lawp. 10
1.3.2 Fiber-optic chemical sensorsp. 12
1.3.3 Optical oximetryp. 14
1.4 Other transducersp. 18
1.4.1 Acoustic bulk-wave devicep. 18
1.4.2 Acoustic surface-wave devicep. 19
1.4.3 Thermal measurementp. 19
1.5 Biosensorsp. 19
1.5.1 Enzyme-based biosensorsp. 20
1.5.2 Immunosensorsp. 22
1.5.3 Microbial sensorsp. 23
Problemsp. 24
Referencesp. 24
2 Neuro-Electric Signal Recordingp. 26
2.1 Neuro-electric signalp. 26
2.1.1 Resting potentialp. 26
2.1.2 Action potentialp. 27
2.2 Conventional electrodesp. 28
2.2.1 Metal microelectrodep. 29
2.2.2 Micropipette electrodep. 29
2.3 Silicon-based microelectrodesp. 30
Problemsp. 31
Referencesp. 32
3 Pressure Sensorsp. 33
3.1 Pressure measurementp. 33
3.2 Indirect pressure measurementp. 34
3.3 Direct measurementp. 36
3.3.1 Diaphragm for pressure sensorp. 36
3.3.2 Strain-gage pressure sensorp. 37
3.3.3 Capacitive pressure sensorp. 39
3.3.4 Fiber-optic pressure sensorp. 40
3.4 Catheter-type pressure sensorsp. 42
3.4.1 Catheter-sensor pressure sensorp. 42
3.4.2 Catheter-tip pressure sensorp. 43
Problemsp. 44
Referencesp. 45
4 X-Ray-Based Imagingp. 46
4.1 X-ray productionp. 47
4.1.1 The X-ray beamp. 47
4.1.2 X-ray tubesp. 47
4.1.3 Anode designp. 48
4.2 Interaction of X-rays with matterp. 49
4.2.1 Scatteringp. 49
4.2.2 Harmful effects of exposurep. 49
4.3 X-ray detectionp. 50
4.3.1 Screen-film detectorsp. 51
4.3.2 Image intensifierp. 51
4.3.3 Digital detectorsp. 52
4.4 Image qualityp. 53
4.5 X-ray applicationsp. 54
4.5.1 X-ray mammographyp. 54
4.5.2 Fluoroscopyp. 55
4.5.3 X-ray angiographyp. 55
4.6 Computed tomographyp. 55
4.6.1 Scanner technologyp. 56
4.6.2 Filtered back-projectionp. 56
4.6.3 Spiral CTp. 57
Problemsp. 58
Referencesp. 58
5 Nuclear Medicinep. 59
5.1 Radionuclidesp. 59
5.2 Gamma detectionp. 60
5.3 Single-photon emission computed tomographyp. 61
5.4 Positron emission tomographyp. 63
5.4.1 Event detectionp. 63
5.4.2 Uses of PETp. 64
5.5 Image qualityp. 65
Problemsp. 66
Referencesp. 66
6 MRIp. 67
6.1 MR physicsp. 67
6.1.1 Precessionp. 67
6.1.2 Excitationp. 69
6.1.3 Relaxationp. 70
6.2 Imaging principlesp. 71
6.2.1 Selective excitationp. 71
6.2.2 Spatial encodingp. 72
6.2.3 Pulse sequencesp. 72
6.3 Image qualityp. 74
6.4 MR angiographyp. 75
6.4.1 Noncontrast-enhanced methodsp. 75
6.4.2 Contrast-enhanced MR angiographyp. 76
6.5 Diffusion-weighted and functional MRIp. 77
6.6 MR spectroscopic imagingp. 78
Problemsp. 78
Referencesp. 79
7 Biomagnetic and Bioelectric Imagingp. 80
7.1 Bioelectromagnetismp. 80
7.1.1 Electroencephalographyp. 81
7.1.2 Magnetoencephalographyp. 81
7.1.3 Electrocardiographyp. 82
7.1.4 Magnetocardiographyp. 82
7.1.5 Biosuceptometryp. 83
7.2 Image generationp. 83
7.2.1 Heart bioelectrical or biomagnetic imagingp. 84
7.2.2 Brain bioelectric or biomagnetic imagingp. 85
7.2.3 The inverse problemp. 85
7.2.4 Space and temporal resolutionp. 87
7.3 Bioeffectsp. 87
Problemsp. 87
Referencesp. 87
8 Ultrasoundp. 89
8.1 Physical principles of ultrasoundp. 89
8.1.1 Sound waves in sonographyp. 90
8.1.2 Speed, wavelength and frequencyp. 90
8.1.3 Sound intensityp. 90
8.1.4 Sound behavior and its interaction with objectsp. 91
8.2 Transducersp. 93
8.2.1 Transducer resonant frequencyp. 93
8.2.2 Transducer assembly headp. 94
8.2.3 Types of transducer assembly headp. 95
8.2.4 Sound beamsp. 95
8.2.5 Transducer beamformingp. 97
8.3 Ultrasound image generationp. 97
8.3.1 Ultrasound resolutionp. 99
8.3.2 Artifactsp. 100
8.4 Doppler ultrasoundp. 102
8.4.1 Continuous wave Doppler ultrasoundp. 102
8.4.2 Pulsed Doppler ultrasoundp. 103
8.4.3 Duplex ultrasoundp. 103
8.4.4 Color flow Doppler ultrasoundp. 103
8.5 Three dimensional (3D) ultrasoundp. 104
8.6 Bioeffectsp. 104
Problemsp. 105
Referencesp. 106
9 Multimodal Imagingp. 107
9.1 Multimodal imaging versus image fusionp. 107
9.2 Multimodal imagingp. 107
9.2.1 Anatomical data and the volume conductor modelp. 109
9.2.2 Source modellingp. 111
9.2.3 Source localizationp. 112
9.2.4 Linearly constrained minimum variance (LMCV) spatial filtersp. 114
9.3 Image fusionp. 117
9.3.1 Virtual colonoscopyp. 117
9.3.2 Brain functionality with CT and SPECTp. 118
9.3.3 Biomagnetic and bioelectric imagingp. 120
9.4 Bioeffectsp. 120
Problemsp. 120
Referencesp. 121
10 General Techniques and Applicationsp. 122
10.1 Minimally invasive cardiovascular surgeryp. 122
10.1.1 Minimally invasive direct coronary artery bypassp. 123
10.1.2 PTMRp. 124
10.1.3 Percutaneous transluminal coronary angioplastyp. 126
10.2 Minimally invasive brain surgeryp. 127
10.2.1 Endoscopic neurosurgery and endoscope-assisted microneurosurgeryp. 127
10.2.2 Image-guided stereotaxic brain surgeryp. 128
10.3 Minimally invasive ophthalmalic surgeryp. 129
10.3.1 Laser glaucoma surgeryp. 129
10.3.2 Laser corneal reshaping surgeryp. 131
Problemsp. 133
Referencesp. 133
11 Endoscopic Surgeryp. 135
11.1 Endoscopesp. 136
11.1.1 Rigid endoscopep. 136
11.1.2 Flexible telescopep. 137
11.1.3 New developments and perspectives of endoscopic technologyp. 139
11.2 Mechanical surgical tools for endoscopic surgeryp. 140
11.2.1 Endoscopic surgical tools for dissection, ligation and suturingp. 141
11.2.2 Haptic feedback for endoscopic surgeryp. 141
11.3 Endoscopic electrosurgery, ultrasonic surgery and laser surgeryp. 142
11.3.1 Electrosurgical technologies in endoscopic surgeryp. 142
11.3.2 Ultrasonic surgery and harmonic scalpelp. 144
11.3.3 Laser surgeryp. 144
11.4 The basic procedure and equipment set-up for laparoscopic surgeryp. 145
11.4.1 Basic procedures of laparoscopic surgeryp. 145
11.4.2 Equipment set-ups for laparoscopic surgeryp. 146
11.4.3 Descriptions of some laparoscopic equipment and surgical toolsp. 146
11.4.4 New trends and perspectives of laparoscopic technologyp. 147
11.5 Arthroscopyp. 148
11.5.1 Instrumentsp. 148
11.5.2 Arthroscopic knee surgeryp. 149
Problemsp. 150
Referencesp. 150
12 Image-Guided Surgeryp. 152
12.1 Image registrationp. 153
12.1.1 Rigid body transformationp. 153
12.1.2 Nonrigid body transformationp. 155
12.1.3 Extrinsic image registrationp. 155
12.1.4 Intrinsic image registrationp. 156
12.1.5 Image fusionp. 157
12.2 Surgical planningp. 158
12.2.1 Generic atlas modelsp. 158
12.2.2 Visualizationp. 159
12.3 Stereotactic surgeriesp. 160
12.3.1 Frame-based stereotactic systemsp. 160
12.3.2 Frameless stereotactic systemsp. 162
12.4 Intraoperative endoscopy and microscopyp. 165
12.4.1 Endoscopyp. 166
12.4.2 Microscopyp. 166
12.5 X-ray fluoroscopyp. 167
12.6 Intraoperative computed tomographyp. 168
12.7 Intraoperative ultrasoundp. 169
12.8 Intraoperative magnetic resonance imagingp. 169
12.8.1 Scanner designp. 170
12.8.2 Instrumentation compatibilityp. 172
12.8.3 Instrument trackingp. 172
12.8.4 Data acquisition and reconstructionp. 173
Problemsp. 173
Referencesp. 173
13 Virtual and Augmented Reality in Medicinep. 176
13.1 Virtual environmentp. 176
13.1.1 VR sensorsp. 177
13.1.2 VR actuatorsp. 179
13.1.3 Augmented realityp. 183
13.2 Teachingp. 183
13.3 Diagnosis and surgical planningp. 184
13.3.1 Diagnosisp. 184
13.3.2 Surgical planningp. 185
13.4 VR simulationsp. 187
13.4.1 Surgical simulationp. 187
13.4.2 Simulating on patient-specific datap. 189
13.4.3 Tissue modellingp. 189
13.5 Image guidancep. 190
13.6 Telesurgeryp. 191
Problemsp. 192
Referencesp. 192
14 Minimally Invasive Surgical Roboticsp. 195
14.1 Introduction to roboticsp. 195
14.1.1 Components of a robotic systemp. 196
14.1.2 Conceptual models of robotsp. 197
14.1.3 Robotic controlp. 197
14.1.4 Robotic actuatorsp. 199
14.1.5 Robotic sensorsp. 199
14.2 Medical roboticsp. 200
14.2.1 Robotic endoscopesp. 201
14.2.2 Gastrointestinal endoscopyp. 202
14.2.3 Colonoscopyp. 203
14.2.4 Laparoscopyp. 204
14.2.5 Neurosurgeryp. 207
14.2.6 Eye surgeryp. 210
14.2.7 Orthopedic surgeryp. 211
14.2.8 Radiosurgeryp. 211
14.2.9 Ear surgeryp. 212
14.3 Robotics in telesurgeryp. 213
14.4 Safetyp. 216
Problemsp. 216
Referencesp. 217
15 Ablationp. 219
15.1 Significance and present applicationsp. 219
15.2 Radio-frequency ablationp. 220
15.2.1 Backgroundp. 221
15.2.2 Mechanisms of RF energy-induced tissue injuryp. 221
15.2.3 Designs of RF ablation systemp. 223
15.2.4 Advantages and limitationsp. 226
15.2.5 Applications of radio-frequency ablationp. 226
15.2.6 Researchp. 227
15.3 Laser ablationp. 228
15.3.1 Backgroundp. 228
15.3.2 Laser-tissue interactionsp. 231
15.3.3 Advantages and limitationsp. 233
15.3.4 Applicationsp. 234
15.3.5 Current researchp. 237
15.4 Ultrasound ablationp. 237
15.4.1 High-intensity focused ultrasound: backgroundp. 238
15.4.2 Advantages and limitationsp. 239
15.4.3 Applicationsp. 240
15.4.4 Researchp. 241
15.5 Cryoablationp. 241
15.5.1 Backgroundp. 241
15.2.2 Mechanism of tissue damagep. 242
15.5.3 Designs of cryoablation systemsp. 242
15.5.4 Advantages and limitationsp. 245
15.5.5 Applications of cryoablationp. 246
15.5.6 Researchp. 247
15.6 Microwave ablationp. 248
15.6.1 Backgroundp. 248
15.6.2 Designsp. 249
15.6.3 Advantages and limitationsp. 250
15.6.4 Applicationsp. 250
15.6.5 Researchp. 252
15.7 Chemical ablationp. 252
15.7.1 Applications of chemical ablationp. 253
Problemsp. 254
Referencesp. 254
16 Neuromuscular Stimulationp. 257
16.1 Stimulating nervep. 257
16.1.1 Brain stimulationp. 257
16.1.2 Diaphragm stimulationp. 258
16.1.3 Bladder stimulationp. 258
16.2 Cardiac pacemakersp. 258
16.2.1 Leadp. 258
16.2.2 Power sourcep. 258
16.2.3 Sensingp. 259
16.2.4 Controlp. 259
16.2.5 Pulse-generating unitp. 259
16.2.6 Pacing synchronyp. 259
16.3 Implantable cardioverter-defibrillatorsp. 259
Problemsp. 260
Referencesp. 260
17 Helical Tomotherapyp. 261
17.1 Introductionp. 261
17.2 Processesp. 263
17.2.1 Optimizationp. 265
17.2.2 Megavoltage computed tomographyp. 267
17.2.3 Registration in projection spacep. 269
17.2.4 Delivery modificationp. 270
17.2.5 Delivery verificationp. 272
17.2.6 Dose reconstructionp. 273
17.3 Conclusionsp. 274
Problemsp. 274
Referencesp. 275
18 Drug Deliveryp. 278
18.1 Noninvasive drug deliveryp. 278
18.1.1 Respiratory deliveryp. 278
18.1.2 Transdermal deliveryp. 281
18.1.3 Oral controlled-release deliveryp. 291
18.1.4 Other noninvasive routes of administrationp. 294
18.2 Controlled-release drug deliveryp. 294
18.2.1 Controlled-release deliveryp. 295
18.2.2 Targeted-release deliveryp. 298
18.3 Controlled-dose deliveryp. 302
18.3.1 Implantable systems and micropumpsp. 302
18.3.2 Feedback systemsp. 303
Problemsp. 303
Referencesp. 304
Indexp. 306
Go to:Top of Page