Skip to:Content
|
Bottom
Cover image for Ceramic nanocomposites
Title:
Ceramic nanocomposites
Series:
Woodhead Publishing series in composites science and engineering ; no. 46

Woodhead Publishing series in composites science and engineering ; no 46
Publication Information:
Oxford ; Philadelphia : Woodhead Publishing, 2013
Physical Description:
xix, 596 p. : ill. ; 25 cm.
ISBN:
9780857093387

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010325679 TA418.9.N35 C368 2013 Open Access Book Book
Searching...

On Order

Summary

Summary

Ceramic nanocomposites have been found to have improved hardness, strength, toughness and creep resistance compared to conventional ceramic matrix composites. Ceramic nanocomposites reviews the structure and properties of these nanocomposites as well as manufacturing and applications.

Part one looks at the properties of different ceramic nanocomposites, including thermal shock resistance, flame retardancy, magnetic and optical properties as well as failure mechanisms. Part two deals with the different types of ceramic nanocomposites, including the use of ceramic particles in metal matrix composites, carbon nanotube-reinforced glass-ceramic matrix composites, high temperature superconducting ceramic nanocomposites and ceramic particle nanofluids. Part three details the processing of nanocomposites, including the mechanochemical synthesis of metallic-ceramic composite powders, sintering of ultrafine and nanosized ceramic and metallic particles and the surface treatment of carbon nanotubes using plasma technology. Part four explores the applications of ceramic nanocomposites in such areas as energy production and the biomedical field.

With its distinguished editors and international team of expert contributors, Ceramic nanocomposites is a technical guide for professionals requiring knowledge of ceramic nanocomposites, and will also offer a deeper understanding of the subject for researchers and engineers within any field dealing with these materials.


Author Notes

Rajat Banerjee is a Senior Officer (Research and Development) at the Central Glass and Ceramic Research Institute, Kolkata, India. Dr Banerjee has undertaken research at the Friedrich Schiller University in Germany, The University of Maryland and the National Institute of Standards and Technology (NIST) in the USA. He published widely in the area of ceramic nanocomposites. He has received an Indo-EU Heritage Fellowship, the best paper award at the XVIIth International Congress on Glass and a Certificate of Appreciation from NIST for his outstanding research on nanomaterials.

Indranil Manna is Director of the Indian Institute of Technology (IIT) Kanpur, India. Professor Manna was formerly Director of the Central Glass and Ceramic Research Institute, Kolkata. He has taught physical metallurgy at IIT Kharagpur for over 25 years and was a Visiting Professor in Germany, USA, Singapore, Poland, Russia and France. Currently a JC Bose Fellow in India, Professor Manna has written over 250 journal publications and is the recipient of numerous national and international awards, and is a Fellow of all four national academies in India (INSA, IAS, NASI, INAE).


Go to:Top of Page