Skip to:Content
|
Bottom
Cover image for Design and test of digital circuits by quantum-dot cellular automata
Title:
Design and test of digital circuits by quantum-dot cellular automata
Publication Information:
Boston, MA : Artech House Publishers, 2008
ISBN:
9781596932678

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010163801 TK7874.88 D47 2008 Open Access Book Book
Searching...

On Order

Summary

Summary

Probing both the science and the engineering involved, this one-of-a-kind resource reviews current microchip fabrication methods and architectures and discusses fundamentals of nanoscale design and DNA self-assembly. Moreover, the book surveys current limitations and challenges, and features detailed case studies of lightweight self-organizing computer architectures. This roadmap to DNA microchip synthesis is essential reading for all engineers and researchers involved in developing nanoscale computer structures, devices, and applications.


Table of Contents

Prefacep. xiii
Chapter 1 Introductionp. 1
1.1 Challengesp. 2
1.2 Previous Workp. 3
1.3 Contributionsp. 4
1.4 Book Outlinep. 7
Referencesp. 8
Chapter 2 Nano Devices and Architectures Overviewp. 11
2.1 Nanoelectronic Devicesp. 12
2.1.1 Carbon Nanotube-based Devicesp. 12
2.1.2 Nanowiresp. 14
2.1.3 Molecular Electronic Devicesp. 15
2.1.4 Single-Electron Devicesp. 17
2.1.5 Resonant Tunneling Diodesp. 21
2.1.6 Spin Transistorsp. 22
2.2 Nano-scale Crossbarsp. 23
2.3 Architecturesp. 25
2.3.1 SET Architecturep. 26
2.3.2 RTD Architecturep. 26
2.3.3 NanoFabrics Architecturep. 27
2.3.4 NanoPLAp. 29
Referencesp. 33
Chapter 3 QCAp. 37
3.1 QCA Implementationp. 42
3.1.1 Metal QCAp. 42
3.1.2 Molecular QCAp. 44
3.1.3 Magnetic QCAp. 45
3.2 Clockingp. 45
3.3 Molecular Attachmentp. 49
3.4 Power Gain and Dissipationp. 51
3.5 QCA Simulatorsp. 53
3.5.1 QCADesignerp. 54
3.6 QCA Circuitsp. 56
3.7 Comparison of Nanotechnology Devicesp. 61
Referencesp. 54
Chapter 4 QCA Combinational Logic Designp. 69
4.1 Gate-based Combinational Logic Designp. 69
4.1.1 Gate-based Design of QCA with Existing Commercial Synthesis Toolsp. 71
4.2 Logic Synthesisp. 73
4.2.1 And/Or-based Logic Synthesisp. 73
4.2.2 Muroga's MV-based Logic Synthesisp. 75
4.2.3 MAjority Logic Synthesizer (MALS)p. 75
4.3 Structural Designp. 75
4.4 And-Or-Inverter (AOI) Gatep. 76
4.4.1 AOI Gate Characterizationp. 76
4.4.2 Defect Characterization of the AOI Gatep. 78
4.4.3 Logic Synthesis Using the AOI Gatep. 82
4.4.4 Conclusionp. 87
Referencesp. 89
Chapter 5 Logic-Level Testing and Defect Characterizationp. 91
5.1 Logic-Level Testingp. 91
5.1.1 Stuck-at Test Properties of MV-based Circuitsp. 92
5.1.2 Test Set for MVsp. 95
5.1.3 C-Testability of MV-based Designsp. 96
5.2 Defect Characterization of Devicesp. 99
5.2.1 Simulation Enginesp. 101
5.2.2 MV Defect Analysisp. 102
5.2.3 Interconnect Defect Analysisp. 107
5.2.4 Probabilistic Analysis and Testingp. 111
5.2.5 Defect Analysis and Testing of QCA Circuitsp. 116
5.2.6 Scaling in the Presence of Defectsp. 133
5.2.7 Conclusionp. 140
Referencesp. 141
Chapter 6 Two-Dimensional Schemes for Clocking/Timing of QCA Circuitsp. 143
6.1 Clocking Analysisp. 144
6.2 Two-Dimensional QCA Clockingp. 146
6.3 Two-Dimensional Wave QCA Clockingp. 151
6.4 Examples of QCA Circuitsp. 156
6.5 Feedback Pathsp. 159
6.6 Simulation Resultsp. 160
6.6.1 2-to-1 Multiplexerp. 161
6.6.2 One-bit Full Adderp. 161
6.6.3 RS Flip-flopp. 161
6.7 Conclusionp. 162
Referencesp. 168
Chapter 7 Tile-Based QCA Designp. 171
7.1 QCA Design by Tilingp. 174
7.2 Fully Populated Grid Analysisp. 176
7.3 Tiles Based on 3 X 3 Gridsp. 179
7.3.1 Orthogonal Tilep. 179
7.3.2 Double Fan-out Tilep. 183
7.3.3 Baseline Tilep. 187
7.3.4 Fan-in Tilep. 190
7.3.5 Triple Fan-out Tilep. 192
7.4 Analysis of Resultsp. 195
7.4.1 Configuration Selectionp. 196
7.5 Logic Analysisp. 196
7.6 Examples of QCA Circuitsp. 200
7.6.1 One-bit Full Adderp. 200
7.6.2 Parity Checkerp. 201
7.6.3 2-to-4 Decoderp. 206
7.6.4 2-to-1 MUXp. 208
7.7 Conclusionp. 210
Referencesp. 211
Chapter 8 Sequential Circuit Design in QCAp. 213
8.1 RS Flip-flop and D Flip-flop in QCAp. 214
8.1.1 Defect Characterization of RS Flip-flopp. 216
8.2 Timing Constraints in QCA Sequential Designp. 219
8.2.1 Timing Constraints Using RS Flip-flopsp. 220
8.2.2 Timing Constraints using D Flip-flopsp. 221
8.3 Algorithm for Clocking Zone Assignmentp. 221
8.3.1 Algorithm Outlinep. 221
8.3.2 Algorithm Detailp. 223
8.3.3 Algorithm for Coplanar Devicep. 226
8.3.4 Examples of QCA Circuitsp. 227
8.4 Defect Characterization of QCA Sequential Circuitsp. 229
8.5 Discussion and Conclusionp. 239
Referencesp. 246
Chapter 9 QCA Memoryp. 247
9.1 Introductionp. 247
9.2 Review of QCA Memoriesp. 249
9.3 Parallel Memory Architecturep. 252
9.3.1 Proposed Parallel QCA Memory Designp. 252
9.3.2 Clocking Considerationsp. 255
9.3.3 Discussion and Comparisonp. 257
9.3.4 Simulationsp. 261
9.4 Serial Memory Architecturep. 263
9.4.1 Memory Design by Tilingp. 263
9.4.2 Clocking and Timingp. 266
9.4.3 QCA Tilesp. 268
9.4.4 Simulationp. 271
9.4.5 Conclusionp. 285
Referencesp. 285
Chapter 10 Implementing Universal Logic in QCAp. 287
10.1 Universal Gatep. 288
10.2 Universal Gate Designsp. 289
10.2.1 And/Or-based Synthesisp. 290
10.2.2 MV-based Synthesisp. 290
10.3 Memory-based LUTp. 294
10.4 Multiplexer-based LUTp. 298
10.5 Discussion and Conclusionp. 301
Referencesp. 302
Chapter 11 QCA Model for Computing and Energy Analysisp. 305
11.1 Review on Reversible Computingp. 306
11.2 Mechanical Modelp. 308
11.2.1 Model of QCA Cellp. 309
11.2.2 Steady State Energy of QCA Devicesp. 312
11.3 Entropy and Dissipation Analysisp. 315
11.3.1 Operation of the Mechanical Cellp. 315
11.4 Landauer and Bennett Clocking Schemesp. 320
11.5 Conclusionp. 323
Referencesp. 325
Chapter 12 Fault Tolerance of Reversible QCA Circuitsp. 327
12.1 Hardware Redundancy Techniquesp. 328
12.2 Majority Multiplexing in QCAp. 333
12.2.1 Fault Tolerant Capacityp. 334
12.2.2 Restoration Speed of Multiplexingp. 336
12.2.3 Summaryp. 338
12.3 Reversible Computing and Fault Tolerancep. 339
12.4 Energy Dissipation of a Reversible MV Multiplexing Systemp. 341
12.4.1 System Without Faultp. 341
12.4.2 Dissipation in Fault Correctionp. 342
12.5 Conclusionp. 344
Referencesp. 347
Chapter 13 Conclusion and Future Workp. 349
App. A Preliminary for QCA Mechanical Modelp. 353
Referencesp. 356
App. B Validation of Mechanical Modelp. 357
B.1 Validation of Static Energy Analysisp. 357
B.2 Validation of Dissipation Analysisp. 358
Referencesp. 360
App. C Energy Dissipation Analysis of Circuit Unitsp. 363
About the Authorsp. 367
Go to:Top of Page