Cover image for Inorganic nanoprobes for biological sensing and imaging
Title:
Inorganic nanoprobes for biological sensing and imaging
Series:
Artech House series engineering in medicine & biology
Publication Information:
London : Artech House, 2009
Physical Description:
ix, 302 p., [21] p. of plates : ill. (some col.) ; 26 cm.
ISBN:
9781596931961

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010196809 T174.7 I56 2009 Open Access Book Book
Searching...

On Order

Summary

Summary

This groundbreaking resource offers you an up-to-date account of the pioneering activity pushing new boundaries in the emerging area of inorganic nanoprobes and their use in biology and medicine. Written and edited by leading experts in the field, this unique book places particular emphasis nanoprobes made of luminescent semiconductor nanocrystals (quantum dots or QDs) and magnetic nanoparticles (MNPs). You find an insightful discussion on the synthesis, characterization, and analysis of the unique properties of luminescent QDs and MNPs. Moreover, this in-depth volume covers assay design and detection, including discussions on the design and implementation of in vitro assay studies using both fluorescence emission and magnetic contast. You also learn how to use luminescent QDs to design fluorescence resonance energy transfer (FRET) investigations. Further, this cutting-edge book looks at the use of QDs and magnetic nanoparticles for live cell imaging and intracellular sensing. You gain a thorough understanding of membrane labeling, means of delivery QD and MNP Cargos inside live cells, the use of infrared emitting QDs for tissue imaging, deep tissue imaging with MNPs based on magnetic contrast, and toxicity issues associated with the use of inorganic probes to live cells and tissue.


Table of Contents

Chapter 1 Colloidal Quantum Dots: Synthesis, Photophysical Properties, and Biofunctionalization Strategiesp. 1
1.1 Introductionp. 1
1.2 Chemistry and Physics of Semiconductor Quantum Dotsp. 2
1.2.1 Basic Physical Properties of Semiconductor Quantum Dotsp. 2
1.2.2 Synthesis, Characterization, and Capping Strategiesp. 4
1.3 Strategies for Surface-Functionalization and Conjugation to Biomoleculesp. 13
1.3.1 Water-Solubilization Strategiesp. 13
1.3.2 Methods for Conjugating QDs with Biomolecular Receptorsp. 18
1.4 Concluding Remarks and Future Outlookp. 19
Acknowledgmentsp. 20
Referencesp. 21
Chapter 2 Colloidal Chemical Synthesis of Organic-Dispersible Uniform Magnetic Nanoparticlesp. 27
2.1 Magnetism of Nanoparticlesp. 27
2.2 Transition Metal Nanoparticlesp. 30
2.2.1 Cobalt Nanoparticlesp. 30
2.2.2 Iron and Nickel Nanoparticlesp. 32
2.3 Metal Alloy Nanoparticlesp. 33
2.3.1 FePt Nanoparticlesp. 33
2.3.2 Other Metal Alloy Nanoparticlesp. 34
2.4 Metal Oxide Nanoparticlesp. 35
2.4.1 Monometallic Oxide Nanoparticlesp. 35
2.4.2 Bimetallic Ferrite Nanoparticlesp. 38
2.5 Representative Synthetic Procedures for Magnetic Nanoparticlesp. 39
2.5.1 Iron Nanoparticlesp. 39
2.5.2 Iron Oxide Nanoparticlesp. 40
Referencesp. 41
Chapter 3 Peptide-Functionalized Quantum Dots for Live Diagnostic Imaging and Therapeutic Applicationsp. 45
3.1 Introductionp. 45
3.2 Phytochelatin Peptides: The All-in-One Solubilization/Functionalization Approachp. 47
3.3 Colloidal and Photophysical Properties of Peptide-Coated Qdotsp. 50
3.4 Live Cell Dynamic Imagingp. 52
3.4.1 Single-Particle Tracking of Cell-Surface Membrane Receptorsp. 52
3.4.2 Peptide-Mediated Intracellular Delivery and Targeting of Qdotsp. 54
3.5 Live Animal Imagingp. 55
3.5.1 Near-Infrared Deep-Tissue Dual-Modality Imagingp. 56
3.5.2 In Vivo Targeting of Tumor Vasculaturep. 57
3.6 Beyond Diagnostic Imaging: Sensing and Therapeutic Applicationsp. 59
3.6.1 Cleavable Peptides for Proteases Activityp. 59
3.6.2 Photodynamic Therapyp. 61
3.7 Conclusion and Perspectivesp. 63
Acknowledgmentsp. 64
Referencesp. 64
Chapter 4 Resonance Energy Transfer-Based Sensing Using Quantum Dot Bioconjugatesp. 71
4.1 Introduction and Backgroundp. 71
4.2 Unique Attributes of Quantum Dots As FRET Donorsp. 73
4.2.1 Improving the Spectral Overlap by Tuning QD Emissionp. 73
4.2.2 Significant Reduction of Direct Excitation of the Acceptorp. 74
4.2.3 Increase FRET Efficiency by Arraying Multiple Acceptors around a Single QDp. 74
4.2.4 Achieving Multiplex FRET Configurations with One Excitation Sourcep. 76
4.2.5 Multiphoton FRET Configurationsp. 77
4.3 FRET-Based Biosensing with Quantum Dotsp. 79
4.3.1 Competitive Sensing Using QD-Protein Conjugatesp. 79
4.3.2 Sensing Enzymatic Activity Using QD-Peptide and QD-Oligonucleotide Substratesp. 82
4.3.3 Detection of Hybridization Using QD-Nucleic Acid Conjugatesp. 85
4.3.4 pH and Ion Sensingp. 88
4.4 Quantum Dots As Sensitizers for Photodynamic Therapyp. 91
4.5 Special Sensing Configurationsp. 93
4.6 Conclusions and Outlookp. 96
Acknowledgmentsp. 97
Referencesp. 97
Chapter 5 Use of Luminescent Quantum Dots to Image and Initiate Biological Functionsp. 101
5.1 Introductionp. 101
5.2 Multivalency Allows Multifunctionalityp. 103
5.3 Stimuli-Responsive Polymers and Qds As Tools for Imagingp. 109
5.4 Conclusionsp. 110
Acknowledgmentsp. 111
Referencesp. 111
Chapter 6 Single Particle Investigation of Biological Processes Using QD-Bioconjugatesp. 115
6.1 Introductionp. 115
6.2 Physical Properties of Single QDsp. 116
6.3 In Vitro Detection of Biomolecular Interactions Using Single QD Fluorescencep. 116
6.3.1 Detection of Biomolecules Using Multicolor Colocalization of QD Probesp. 117
6.3.2 Colocalization Studies Using Streptavidin-Coupled QD-Dye Pairsp. 119
6.3.3 Fluorescence Energy Transfer from Single QD to Organic Fluorophoresp. 119
6.4 In Vitro and In Vivo Tracking of Protein Using Single QDsp. 124
6.4.1 In Vitro Detection of Kinesin and Myosin Motor Movementp. 124
6.4.2 Tracking of Protein Receptors in Live Cellsp. 126
6.5 Conclusionp. 129
Acknowledgmentsp. 129
Referencesp. 130
Chapter 7 Assessment of the Issues Related to the Toxicity of Quantum Dotsp. 133
7.1 Introductionp. 133
7.2 General Considerationsp. 134
7.2.1 Routes of Exposurep. 134
7.2.2 Mechanisms of Cellular Internalization of QDsp. 135
7.2.3 Detection of QD-Induced Cytotoxicityp. 136
7.3 Mechanisms of Quantum Dots Cytotoxicityp. 138
7.3.1 Release of Toxic Metal Ionsp. 138
7.3.2 Effects of Capping Materials on Cytotoxicityp. 140
7.3.3 Effects of QD Size on Cytotoxicityp. 141
7.3.4 Effects of Reactive Oxygen Species on Cytotoxicityp. 142
7.3.5 Effects of QDs on Genomic DNAp. 147
7.4 Bioaccumulation and Clearance of QDsp. 150
7.5 Outlookp. 153
Acknowledgmentsp. 154
Referencesp. 154
Chapter 8 Chemical and Biological Sensing Based on Gold Nanoparticlesp. 161
8.1 Introductionp. 161
8.2 Synthesis of Gold Nanoparticlesp. 162
8.3 Physical Properties of Gold Nanoparticlesp. 164
8.4 Colorimetric Sensingp. 165
8.4.1 Colorimetric Detection of Metal Ions and Anionsp. 166
8.4.2 Colorimetric Detection of Biomaterialsp. 167
8.5 Fluorescence Sensingp. 170
8.6 Electrical and Electrochemical Sensingp. 172
8.7 Surface Enhanced Raman Scattering-Based Sensingp. 179
8.8 Gold Nanoparticle-Amplified SPR Sensingp. 180
8.9 Quartz Crystal Microbalance-Based Sensingp. 181
8.10 Gold Nanoparticle-Based Bio-Barcode Assayp. 182
8.11 Concluding Remarksp. 183
Acknowledgmentsp. 185
Referencesp. 185
Chapter 9 Plasmon-Resonant Gold Nanorods: Photophysical Properties Applied Toward Biological Imaging and Therapyp. 197
9.1 Introductionp. 197
9.2 Synthesisp. 198
9.3 Optical Propertiesp. 200
9.3.1 Absorptionp. 200
9.3.2 Plasmon-Resonant Scatteringp. 202
9.3.3 Linear Photoluminescencep. 202
9.3.4 Nonlinear Optical Propertiesp. 203
9.3.5 Other Optical Propertiesp. 205
9.4 Surface Chemistry and Biocompatibilityp. 206
9.4.1 Bioconjugation Methodsp. 206
9.4.2 Cytotoxicity and Nonspecific Cell Uptakep. 208
9.5 Biological Applications of Gold Nanorodsp. 209
9.5.1 Contrast Agents for Imagingp. 209
9.5.2 Photothermal Therapyp. 213
9.5.3 Ex Vivo Bioanalytical Applicationsp. 215
9.6 Outlookp. 217
Referencesp. 218
Chapter 10 Magnetic Nanoparticles in Biomedical Applicationsp. 235
10.1 Introductionp. 235
10.2 Nanoscale Magnetic Propertiesp. 235
10.3 Magnetic Resonance Imaging (MRI) Contrast Agentp. 237
10.4 Magnetic Separationp. 241
10.5 Magnetic Drug Deliveryp. 245
10.6 Conclusionsp. 247
Referencesp. 247
Chapter 11 Magnetic Nanoparticles-Assisted Cellular MR Imaging and Their Biomedical Applicationsp. 251
11.1 Introductionp. 251
11.2 Characterization of MRI Contrast Agents or Magnetic Nanoparticles Used in Cell Labeling for CMRIp. 252
11.2.1 Paramagnetic Agentsp. 252
11.2.2 Superparamagnetic Agentsp. 253
11.3 Methods for Labeling Cells with Magnetic Nanoparticles for CMRIp. 256
11.3.1 Endocytosis of Contrast Agentsp. 256
11.3.2 Modified Nanoparticles for Cell Labelingp. 257
11.3.3 Transfection Agent Mediated Cell Labelingp. 260
11.3.4 Other Methods of Cell Labelingp. 260
11.4 Methods to Monitor the Functional Status of Labeled Cells or Toxicity Following Labelingp. 261
11.4.1 Determination of Cell Viabilityp. 262
11.4.2 Determination of Cell Functionp. 263
11.4.3 Determination of Cell Differentiation Capacityp. 263
11.5 MRI Techniques to Detect Cells Labeled with Superparamagnetic Iron Oxidesp. 263
11.6 Animal Studies That Have Utilized CMRIp. 265
11.6.1 Stem Cell Trackingp. 265
11.6.2 Intracranial Tumor Studiesp. 265
11.6.3 Tumor Angiogenesisp. 266
11.6.4 Stroke and Trauma Modelsp. 268
11.6.5 Myocardial Infarction and Vascular Modelsp. 269
11.6.6 Models of Multiple Sclerosisp. 272
11.7 Translation to the Clinicp. 273
11.7.1 Human Studiesp. 273
11.7.2 Regulatory Issuesp. 274
Referencesp. 276
About the Editorsp. 289
List of Contributorsp. 290
Indexp. 293