Cover image for Mathematical mechanics : from particle to muscle
Title:
Mathematical mechanics : from particle to muscle
Personal Author:
Series:
World Scientific series on nonlinear science. Series A ; v. 77
Publication Information:
Singapore ; Hackensack, NJ : World Scientific, c2011
Physical Description:
xv, 373 p. : ill. (some col.) ; 24 cm.
ISBN:
9789814289702

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010262872 QA805 C66 2011 Open Access Book Book
Searching...

On Order

Summary

Summary

This unprecedented book offers all the details of the mathematical mechanics underlying modern modeling of skeletal muscle contraction. The aim is to provide an integrated vision of mathematics, physics, chemistry and biology for this one understanding. The method is to take advantage of latest mathematical technologies - Eilenberg-Mac Lane category theory, Robinson infinitesimal calculus and Kolmogorov probability theory - to explicate Particle Mechanics, The Theory of Substances (categorical thermodynamics), and computer simulation using a diagram-based parallel programming language (stochastic timing machinery). Proofs rely almost entirely on algebraic calculations without set theory. Metaphors and analogies, and distinctions between representational pictures, mental model drawings, and mathematical diagrams are offered.
AP level high school calculus students high school science teachers, undergraduates and graduate college students, and researchers in mathematics, physics, chemistry, and biology may use this integrated publication to broaden their perspective on science, and to experience the precision that mathematical mechanics brings to understanding the molecular mechanism vital for nearly all animal behavior.


Table of Contents

Acknowledgmentsp. xv
Introductionp. 1
1 Introductionp. 3
1.1 Why Would I Have Valued This Book in High School?p. 4
1.2 Who Else Would Value This Book?p. 5
1.3 Physics & Biologyp. 6
1.4 Motivationp. 7
1.5 The Principle of Least Thoughtp. 10
1.6 Measurementp. 11
1.7 Conceptual Blendingp. 11
1.8 Mental Model of Muscle Contractionp. 13
1.9 Organizationp. 15
1.10 What is Missing?p. 18
1.11 What is Original?p. 19
Mathematicsp. 21
2 Ground & Foundation of Mathematicsp. 23
2.1 Introductionp. 23
2.2 Ground: Discourse & Surfacep. 26
2.2.1 Symbol & Expressionp. 27
2.2.2 Substitution & Rearrangementp. 28
2.2.3 Diagrams Rule by Diagram Rulesp. 30
2.2.4 Dot & Arrowp. 30
2.3 Foundation: Category & Functorp. 36
2.3.1 Categoryp. 38
2.3.2 Functorp. 40
2.3.3 Isomorphismp. 40
2.4 Examples of Categories & Functorsp. 41
2.4.1 Finite Setp. 41
2.4.2 Setp. 43
2.4.3 Exponentiation of Setsp. 50
2.4.4 Pointed Setp. 51
2.4.5 Directed Graphp. 53
2.4.6 Dynamic Systemp. 54
2.4.7 Initialized Dynamic Systemp. 56
2.4.8 Magmap. 59
2.4.9 Semigroupp. 60
2.4.10 Monoidp. 61
2.4.11 Groupp. 63
2.4.12 Commutative Groupp. 63
2.4.13 Ringp. 64
2.4.14 Fieldp. 65
2.4.15 Vector Space over a Fieldp. 66
2.4.16 Ordered Fieldp. 67
2.4.17 Topologyp. 68
2.5 Constructionsp. 69
2.5.1 Magma Constructed from a Setp. 70
2.5.2 Category Constructed from a Directed Graphp. 71
2.5.3 Category Constructed from a Topological Spacep. 74
3 Calculus as an Algebra of Infinitesimalsp. 75
3.1 Real & Hyperrealp. 76
3.2 Variablep. 79
3.2.1 Computer Program Variablep. 79
3.2.2 Mathematical Variablep. 79
3.2.3 Physical Variablep. 80
3.3 Right, Left & Two-Sided Limitp. 82
3.4 Continuityp. 83
3.5 Differentiable, Derivative & Differentialp. 83
3.5.1 Partial Derivativep. 86
3.6 Curve Sketching Reminderp. 88
3.7 Integrabilityp. 89
3.8 Algebraic Rules for Calculusp. 92
3.8.1 Fundamental Rulep. 92
3.8.2 Constant Rulep. 92
3.8.3 Addition Rulep. 92
3.8.4 Product Rulep. 92
3.8.5 Scalar Product Rulep. 93
3.8.6 Chain Rulep. 93
3.8.7 Exponential Rulep. 94
3.8.8 Change-of-Variable Rulep. 94
3.8.9 Increment Rulep. 94
3.8.10 Quotient Rulep. 94
3.8.11 Intermediate Value Rulep. 94
3.8.12 Mean Value Rulep. 95
3.8.13 Monotoniaty Rulep. 95
3.8.14 Inversion Rulep. 95
3.8.15 Cyclic Rulep. 97
3.8.16 Homogeneity Rulep. 99
3.9 Three Gaussian Integralsp. 99
3.10 Three Differential Equationsp. 101
3.11 Legendre Transformp. 103
3.12 Lagrange Multiplierp. 106
4 Algebra of Vectorsp. 111
4.1 Introductionp. 111
4.2 When is an Array a Matrix?p. 112
4.3 List Algebrap. 113
4.3.1 Abstract Row Listp. 114
4.3.2 Set of Row Listsp. 114
4.3.3 Inclusion of Row Listsp. 115
4.3.4 Projection of Row Listsp. 115
4.3.5 Row List Algebrap. 115
4.3.6 Monoid Constructed from a Setp. 117
4.3.7 Column List Algebra & NaturalTransformationp. 119
4.3.8 Lists of Listsp. 122
4.4 Table Algebrap. 124
4.4.1 The Empty and Unit, Tablesp. 124
4.4.2 The Set of All Tablesp. 124
4.4.3 Juxtaposition of Tables is a Tablep. 125
4.4.4 Outer Product of Two Lists is a Tablep. 126
4.5 Vector Algebrap. 127
4.5.1 Category of Vector Spaces & Vector Operatorsp. 128
4.5.2 Vector Space Isomorphismp. 129
4.5.3 Inner Productp. 133
4.5.4 Vector Operator Algebrap. 134
4.5.5 Dual Vector Spacep. 135
4.5.6 Double Dual Vector Spacep. 137
4.5.7 The Unique Extension of a Vector Operatorp. 137
4.5.8 The Vector Space of Matricesp. 139
4.5.9 The Matrix of a Vector Operatorp. 139
4.5.10 Operator Composition & Matrix Multiplicationp. 140
4.5.11 More on Vector Operatorsp. 141
Particle Mechanicsp. 145
5 Particle Universep. 147
5.1 Conservation of Energy & Newton's Second Lawp. 149
5.2 Lagrange's Equations & Newton's Second Lawp. 150
5.3 The Invariance of Lagrange's Equationsp. 152
5.4 Hamilton's Principlep. 155
5.5 Hamilton's Equationsp. 160
5.6 A Theorem of George Stokesp. 162
5.7 A Theorem on a Series of Impulsive Forcesp. 163
5.8 Langevin's Trickp. 164
5.9 An Argument due to Albert Einsteinp. 165
5.10 An Argument clue to Paul Langevinp. 167
Timing Machineryp. 173
6 Introduction to Timing Machineryp. 175
6.1 Blending Time & State Machinep. 177
6.2 The Basic Oscillatorp. 178
6.3 Timing Machine Variablep. 179
6.4 The Robust Low-Pass Filterp. 180
6.5 Frequency Multiplier & Differential Equationp. 180
6.6 Probabilistic Timing Machinep. 181
6.7 Chemical Reaction System Simulationp. 182
6.8 Computer Simulationp. 183
7 Stochastic Timing Machineryp. 187
7.1 Introductionp. 187
7.1.1 Syntax for Drawing Modelsp. 189
7.1.2 Semantics for Interpreting Modelsp. 190
7.2 Examplesp. 192
7.2.1 The Frequency Doubler of Brian Stromquistp. 192
7.3 Zero-Order Chemical Reactionp. 193
7.3.1 Newton's Second Lawp. 194
7.3.2 Gillespie Exact Stochastic Simulationp. 195
7.3.3 Brownian Particle in a Force Fieldp. 196
Theory of Substancesp. 203
8 Algebraic Thermodynamicsp. 205
8.1 Introductionp. 205
8.2 Chemical Element, Compound & Mixturep. 207
8.3 Universep. 209
8.4 Reservoir & Capacityp. 224
8.5 Equilibrium & Equipotentialityp. 225
8.6 Entropy & Energyp. 229
8.7 Fundamental Equationp. 234
8.8 Conduction & Resistancep. 238
9 Clausius, Gibbs & Duhemp. 241
9.1 Clausius Inequalityp. 241
9.2 Gibbs-Duhem Equationp. 244
10 Experiments & Measurementsp. 247
10.1 Experimentsp. 247
10.1.1 Boyle, Charles & Gay-Lussac Experimentp. 247
10.1.2 Rutherford-Joule Friction Experimentp. 251
10.1.3 Joule-Thomson Free Expansion of an Ideal Gasp. 252
10.1.4 Iron-Lead Experimentp. 254
10.1.5 Isothermal Expansion of an Ideal Gasp. 258
10.1.6 Reaction at Constant Temperature & Volumep. 260
10.1.7 Reaction at Constant Pressure& Temperaturep. 261
10.1.8 Théophile de Donder & Chemical Affinityp. 265
10.1.9 Gibbs Free Energyp. 268
10.2 Measurementsp. 271
10.2.1 Balance Measurementsp. 273
11 Chemical Reactionp. 275
11.1 Chemical Reaction Extent, Completion & Realizationp. 279
11.2 Chemical Equilibriump. 281
11.3 Chemical Formations & Transformationsp. 285
11.4 Monoidal Category & Monoidal Functorp. 286
11.5 Hess' Monoidal Functorp. 289
Muscle Contraction Researchp. 291
12 Muscle Contractionp. 293
12.1 Muscle Contraction: Chronologyp. 293
12.1.1 19th Centuryp. 293
12.1.2 1930-1939p. 293
12.1.3 1940-1949p. 294
12.1.4 1950-1959p. 296
12.1.5 1960-1969p. 299
12.1.6 1970-1979p. 301
12.1.7 1980-1989p. 304
12.1.8 1990-1999p. 305
12.1.9 2000-2010p. 311
12.2 Conclusionp. 325
Appendicesp. 327
Appendix A Exponential & Logarithm Functionsp. 329
Appendix B Recursive Definition of Stochastic Timing Machineryp. 331
B.1 Ordinary Differential Equation: Initial Value Problemp. 331
B.2 Stochastic Differential Equation: A Langevin Equation without Inertiap. 332
B.3 Gillespie Exact Stochastic Simulation: Chemical Master Equationp. 333
B.4 Stochastic Timing Machine: Abstract Theoryp. 334
Appendix C MATLAB Codep. 335
C.1 Stochastic Timing Machine Interpreterp. 335
C.2 MATLAB for Stochastic Timing Machinery Simulationsp. 338
C.3 Brownian Particle in Force Fieldp. 339
C.4 Figures. Simulating Brownian Particle in Force Fieldp. 344
Appendix D Fundamental Theorem of Elastic Bodiesp. 347
Bibliographyp. 353
Indexp. 363