Cover image for Interactions between charged particles in a magnetic field : a theoretical approach to ion stopping in magnetized plasmas
Title:
Interactions between charged particles in a magnetic field : a theoretical approach to ion stopping in magnetized plasmas
Personal Author:
Publication Information:
Berlin : Springer-Verlag, 2007
Physical Description:
Berlin Heidelberg : Springer-Verlag GmbH., 2007.
ISBN:
9783540698531

9783540698548
General Note:
Also available in online version
Added Title:
Interactions Between Charged Particles in a Magnetic Field [electronic resource] : A Theoretical Approach to Ion Stopping in Magnetized Plasmas
Electronic Access:
Fulltext
DSP_RESTRICTION_NOTE:
Remote access restricted to users with a valid UTM ID via VPN

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010138867 QC794.6.S8 N47 2007 Open Access Book Book
Searching...

On Order

Summary

Summary

This monograph focuses on the influence of a strong magnetic field on the interactions between charged particles in a many-body system. Two complementary approaches, the binary collision model and the dielectric theory are investigated in both analytical and numerical frameworks. In the binary collision model, the Coulomb interaction between the test and the target particles is screened because of the polarization of the target.


Author Notes

Dr. Hrachya Nersisyan

1986-1987 Junior Scientific Researcher, Laboratory of Radiation Physics, Yerevan

Physics Institute, Yerevan, Armenia

1987-1989 Pre-doctoral position, Department of Plasma Theory, P.N. Lebedev Physical

Institute, Moscow, Russia

1993 Dr. of Physical and mathematical sciences, P.N. Lebedev Physical Institute,

Moscow, Russia

1993-1994 Scientific Researcher, Institute of Radiophysics & Electronics, Ashtarak,

Armenia

1997 Guest Researcher, Laboratoire de Physique des Gaz et des Plasmas,

Université Paris-XI, Orsay, France

1999 DAAD (German Academic Exchange Service) Fellowship, Institut für

Theoretische Physik II, Universität Erlangen-Nürnberg, Erlangen, Germany

2001-2002 Alexander von Humboldt Fellowship, Institut für Theoretische Physik II,

Universität Erlangen-Nürnberg, Erlangen, Germany

2004-2005 Guest Researcher, Institut für Theoretische Physik II, Universität Erlangen-

Nürnberg, Erlangen, Germany

1994- Senior Scientific Researcher, Institute of Radiophysics & Electronics,

Ashtarak, Armenia

Prof. Dr. Christian Toepffer

1967 Dr. phil. nat.

1973-1974 Associate Professor, University Frankfurt/Main

1974-1980 Professor of Theoretical Physics, University of Witwatersrand,

Johannesburg, South Africa

1980- Professor of Theoretical Physics, University of Erlangen

Dr. Günter Zwicknagel

1994 Dr. rer. nat. in Physics at the University of Erlangen

1995-1997 Research scholar at the Laboratoire de Physique des Gaz et des Plasmas,

Orsay, France

1997-2000 Research assistant at the Institute of Theoretical Physics II, University of

Erlangen

2000- Researcher and lecturer at the University of Erlangen


Table of Contents

1 Introductionp. 1
2 Previous Work, Status and Overviewp. 5
2.1 Energy Loss in an Unmagnetized One-Component-Plasma (OCP)p. 5
2.2 Challenges Imposed by the Magnetic Fieldp. 11
2.3 Classical-Trajectory-Monte-Carlo (CTMC) Simulationsp. 14
2.4 Dielectric Treatment (DT), Vlasov-Poisson Equation, Linear Response (ER)p. 16
2.5 Particle-In-Cell (PIC) Simulationsp. 22
3 Binary Collision Modelp. 25
3.1 Introductory Remarksp. 25
3.2 Equations of Motionp. 26
3.3 Energy Loss and Velocity Transferp. 28
3.4 General Interactions, no Magnetic Fieldp. 29
3.5 Binary Collisions (BC) in a Magnetic Fieldp. 33
3.6 Parallel Ion Motionp. 39
3.7 Chaotic Scattering and Validity of the Perturbation Treatmentp. 42
3.8 Binary Collision Model for Arbitrary Ion Motion in a Strong Fieldp. 51
3.9 Binary Collisions in a Weak Fieldp. 57
3.10 Impact Parameter Integration and Velocity Averagingp. 61
3.11 Velocity Diffusion (Straggling) of Charged Particles in a Magnetic Fieldp. 68
4 Dielectric Theoryp. 73
4.1 Stopping Power (SP) in Plasmas Without Magnetic fieldp. 73
4.2 Stopping in Plasmas With Weak Magnetic fieldp. 76
4.2.1 Small Projectile Velocitiesp. 77
4.2.2 High Projectile Velocitiesp. 78
4.3 Stopping in Plasmas With Strong Magnetic Fieldp. 79
4.3.1 Small Projectile Velocitiesp. 81
4.3.2 High Projectile Velocitiesp. 81
4.4 Stopping in the Low-Velocity Limit at Arbitrary Field Strengthsp. 83
4.5 High-Velocity SP in a Magnetized Plasmap. 85
4.5.1 Heavy Ions with Rectilinear Trajectoriesp. 87
4.5.2 Weakly Coupled Plasma with Strong Magnetic Fieldsp. 91
4.5.3 Light Ions, The Effect of the Cyclotron Rotationp. 93
4.6 Reduced LR (RLR) Treatmentp. 96
4.6.1 RLR, LR and BC Treatments Without Magnetic Fieldp. 98
4.6.2 RLR, LR and BC Treatments With Strong Magnetic Fieldsp. 100
4.7 Conformity Between Reduced LR and BC approachesp. 106
5 Quantum Theory of SP in Magnetized Plasmasp. 109
5.1 Dielectric Theoryp. 109
5.2 Equation of State for Quantum Magnetized Plasmasp. 115
5.2.1 Critical Temperaturep. 115
5.2.2 Fully Degenerate Electron Plasmap. 116
5.2.3 Semiclassical and Classical Limitsp. 118
5.3 Dielectric Function, Fully Degenerate Plasmap. 118
5.3.1 Fully Degenerate Plasma in a Strong Magnetic Fieldp. 120
5.3.2 Acoustic Plasma Resonancep. 121
5.4 Dielectric Function, Semiclassical Limitp. 121
5.5 Stopping Power in a Magnetized Quantum Plasmap. 124
5.5.1 Low-Velocity Stopping Power in a Semiclassical Regimep. 124
5.5.2 Stopping power in an Infinitely Strong Magnetic Field, Low-Velocity Limitp. 126
5.5.3 Stopping power in a Strong Magnetic Field in the Nearly Degenerate Regimep. 129
5.6 Binary Collision Treatment, Conformity Between BC and RLRp. 130
5.7 Correspondence Between Quantum and Classical BC Treatmentsp. 134
5.7.1 Cartesian Basisp. 134
5.7.2 Cylindrical Basisp. 137
5.8 Averaged Classical Second-Order Energy Transferp. 140
6 Applications and Illustrating Examplesp. 143
6.1 Electron Cooling in Storage Ringsp. 143
6.1.1 Energy Loss and Drag Forcep. 144
6.1.2 Cooling Forcesp. 145
6.1.3 Emittance and momentum spreadp. 148
6.2 Electron Cooling in Penning Trapsp. 150
6.2.1 Modeling of the Cooling Process in a Trapp. 151
6.2.2 Cooling of Protons and Highly Charged Ionsp. 153
6.2.3 Cooling of Antiprotons and Protons by Electrons and Positronsp. 159
7 Summary and Conclusionp. 165
A Dielectric Function of the Magnetized Electron-Ion Plasmap. 169
B Anomalous Termp. 171
C Dielectric Function of the Magnetized Quantum Plasmap. 173
D Some Properties of the Function F nn′ (¿)p. 175
Referencesp. 177
List of Symbols and Abbreviationsp. 183