Cover image for Magnetism in medicine : a handbook
Title:
Magnetism in medicine : a handbook
Edition:
2nd ed.
Publication Information:
Weinheim : Wiley-Vch Verlag, 2007
ISBN:
9783527405589

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010129360 QH656 M33 2007 Open Access Book Book
Searching...

On Order

Summary

Summary

This second, completely updated and extended edition of the only reference work in this growing field of medical physics focuses on biomagnetic instrumentation as well as applications in cardiology and neurology. New chapters have been added on fetal magnetography and magnetic field therapy, as well as the safety aspects of magnetic fields.
Written by well-known specialists from Germany, USA, Canada, Japan, the Netherlands and Scandinavia, the result is a manual for researchers in this field as well as for those who apply modern methods based on magnetism in medical practice. It equally provides a detailed overview for newcomers to the field as well as for experts familiar with only one part of the area.


Author Notes

Wilfried Andrä, born in Weimar in 1923, received his physics PhD from the University of Jena in 1957 and gained the degree of 'Doctor of Natural Sciences' at the Technical University of Dresden in 1970. In 1969 he was appointed Professor at the Deutsche Akademie der Wissenschaften in Berlin. His field of work was solid state magnetism (domains, thin films, information storage, high temperature superconductivity, micromagnetism). After his retirement his main interest moved to the application of magnetism in medicine. Prof. Andrä is author or co-author of more than 130 publications in international scientific journals and several review articles.

Hannes Nowak was born in Weinsberg, Germany, in 1948. He received his physics (PhD from the University of Wroclaw, Poland, in 1973 and finished his doctoral thesis in SQUID application at the University of Jena in 1980. He qualified as professor in 1989 and became a specialist in biomagnetism (SQUID and instrumentation, shielding, noise reduction, medical applications and magnetic source imaging). Dr. Nowak is the author or co-author of more than 50 refereed journal publications, 75 conference proceeding articles and more than 110 posters.




Prof. Dr. Wilfried Andrä
Institute of Physical High-Technologies
Jena, Germany

Dr. Hannes Nowak
Biomagnetic Center
Department of Neurology
University of Jena, Germany


Table of Contents

Urs HafeliDmitri BerkovWilfried Andra and Hannes NowakJurgen H. Bernhardt and Gunnar BrixHannes NowakHannes NowakGerhard Stroink and Birgit Hailer and Peter Van LeeuwenThomas R. Knosche and Nobukazu Nakasato and Michael Eiselt and Jens HaueisenUwe Schneider and Ekkehard SchleussnerWerner A. KaiserArnulf OppeltDebiao Li and Andrew C. LarsonOliver Speck and Axel Schreiber and Clemens Janz and Jurgen HennigMichael E. Moseley and Roland Bammer and Joachim RotherPetra Schmalbrock and Donald W. ChakeresClifford R. Weiss and Jonathan S. LewinWerner A. Kaiser and Stefan O.R. Pfleiderer and Karl-Heinz Herrmann and Jurgen R. ReichenbachPeter BachertWilfried AndraHendryk Richert and Olaf Kosch and Peter GornertWilfried Andra and Christoph WernerShoogo Ueno and Minoru FujikiRoland Fischer and David E. FarrellRudolf Hergt and Wilfried AndraMichael Apel and Uwe A.O. Heinlein and Stefan Miltenyi and Jurgen Schmitz and John D.M. CampbellChristoph Alexiou and Roland JurgonsWilfried Andra and Urs HafeliJens Haueisen
Prefacep. XVII
List of Contributorsp. XIX
1 Introductionp. 1
1.1 The History of Magnetism in Medicinep. 3
1.1.1 Originsp. 3
1.1.2 First Medical Uses of Magnetsp. 4
1.1.3 Use of Attracting Forces of Magnets in Medicinep. 5
1.1.4 Treatment of Nervous Diseases and Mesmerismp. 10
1.1.5 Other Medical Uses of Magnets and Magnetismp. 13
1.1.6 The Influence of Magnetic Fields on Manp. 18
Referencesp. 22
1.2 Basic Physical Principlesp. 26
1.2.1 Introductionp. 26
1.2.2 The Electromagnetic Field Concept and Maxwell Equationsp. 27
1.2.2.1 Maxwell Equations in a General Case of Time-Dependent Fieldsp. 27
1.2.2.2 Constant (Time-Independent) Fields: Electro- and Magnetostaticsp. 29
1.2.2.3 Electric and Magnetic Potentials: Concept of a Dipolep. 30
1.2.2.4 Force, Torque and Energy in Magnetic Fieldp. 35
1.2.3 Magnetic Field in Condensed Matter: General Conceptsp. 38
1.2.3.1 Maxwell Equations in Condensed Matter: Magnetizationp. 38
1.2.3.2 Classification of Materials According to their Magnetic Propertiesp. 40
1.2.3.3 Mean Field Theory of Ferromagnetismp. 42
1.2.4 Magnetic Field in Condensed Matter: Special Topicsp. 44
1.2.4.1 Magnetic Energy Contributionsp. 44
1.2.4.2 Magnetic Domains and Domain Wallsp. 51
1.2.4.3 Magnetization Curves and Hysteresis Loopsp. 53
1.2.4.4 Single-Domain Particles and Superparamagnetismp. 56
1.2.4.5 Irreversible Magnetic Relaxationp. 59
1.2.4.6 Reconstruction of Magnetization Distribution Inside a Body from Magnetic Field Measurementsp. 61
Appendixp. 63
Referencesp. 64
1.3 Creating and Measuring Magnetic Fieldsp. 65
1.3.1 Introductionp. 65
1.3.2 The Generation of Magnetic Fieldsp. 65
1.3.3 The Measurement of Magnetic Fieldsp. 70
1.3.4 Discussionp. 74
Referencesp. 74
1.4 Safety Aspects of Magnetic Fieldsp. 76
1.4.1 Introductionp. 76
1.4.2 Risk Evaluation and Guidance on Protectionp. 76
1.4.2.1 Evaluation Processp. 77
1.4.2.2 Development of Guidance on Protectionp. 77
1.4.3 Static and Extremely Slowly Time-Varying Magnetic Fieldsp. 78
1.4.3.1 Interaction Mechanisms and Biological Bases for Limiting Exposurep. 78
1.4.3.2 Epidemiologyp. 80
1.4.3.3 Safety Aspects and Exposure Levelsp. 81
1.4.4 Time-Varying Magnetic Fieldsp. 81
1.4.4.1 Interaction Mechanisms and Biological Bases for Limiting Exposurep. 81
1.4.4.2 Epidemiologyp. 83
1.4.4.3 Safety Aspects and Exposure Levelsp. 84
1.4.5 Electromagnetic Fieldsp. 84
1.4.5.1 Interaction Mechanisms and Biological Bases for Limiting Exposurep. 84
1.4.5.2 Epidemiologyp. 88
1.4.5.3 Safety Aspects and Exposure Limitsp. 89
1.4.6 Protection of Patients and Volunteers Undergoing MR Proceduresp. 89
1.4.6.1 Static Magnetic Fieldsp. 90
1.4.6.2 Time-Varying Magnetic Gradient Fieldsp. 90
1.4.6.3 Radiofrequency Electromagnetic Fieldsp. 91
1.4.6.4 Contraindicationsp. 93
Referencesp. 94
2 Biomagnetismp. 97
2.1 Introductionp. 99
2.2 Biomagnetic Instrumentationp. 101
2.2.1 Historyp. 101
2.2.2 Biomagnetic Fieldsp. 102
2.2.3 Squid Sensorp. 104
2.2.4 Shielding: Magnetically and Electrically Shielded Roomsp. 109
2.2.5 Gradiometersp. 113
2.2.6 Dewar/Cryostatp. 116
2.2.7 Commercial Biomagnetic Measurement Devicesp. 117
2.2.7.1 4-D Neuroimagingp. 118
2.2.7.2 VSM MedTech Ltd.p. 126
2.2.7.3 Elekta Neuromagp. 132
2.2.7.4 Advanced Technologies Biomagnetics (AtB) s.r.l.p. 139
2.2.7.5 CardioMag Imagingp. 142
2.2.7.6 Tristan Technologies, Inc.p. 144
2.2.7.7 Philips Research, Hamburgp. 146
2.2.8 Special Biomagnetic Measurement Devicesp. 148
2.2.8.1 Micro-Squid Systemsp. 148
2.2.8.2 The Jena 16-Channel Micro-Squid Devicep. 149
2.2.8.3 Planar Gradiometersp. 149
2.2.8.4 Japanese 256-Channel Device (SSL-Project)p. 151
2.2.8.5 Vector-Magnetometersp. 151
2.2.8.6 Biomagnetic Devices with Cryocoolerp. 152
2.2.9 High-Temperature Superconductivityp. 152
2.2.10 Perspectivesp. 154
Referencesp. 155
2.3 Cardiomagnetismp. 164
2.3.1 Introductionp. 164
2.3.1.1 Historical Backgroundp. 164
2.3.1.2 Electrophysiologyp. 165
2.3.2 Forward Solutionsp. 167
2.3.2.1 Introductionp. 167
2.3.2.2 Single Current Dipole in an Infinite Homogeneous Conductive Mediump. 167
2.3.2.3 Current Dipole in a Realistic Torsop. 170
2.3.2.4 Extended Source Modelsp. 172
2.3.2.5 Summaryp. 175
2.3.3 Inverse Solutionsp. 175
2.3.3.1 Introductionp. 175
2.3.3.2 Model Data Using the Current Dipole as Source Modelp. 176
2.3.3.3 Model Data Using Distributed Sources as Source Model: Imagingp. 178
2.3.3.4 Summaryp. 179
2.3.4 Validationp. 180
2.3.5 Clinical Applications of Magnetocardiographyp. 183
2.3.6 Ischemic Heart Diseasep. 183
2.3.6.1 Analysis of MCG Signal Morphologyp. 184
2.3.6.2 Determination of Time Intervalsp. 185
2.3.6.3 Parameters of the Magnetic Fieldp. 186
2.3.6.4 Source Parametersp. 189
2.3.6.5 Conclusionp. 191
2.3.7 Hypertensive Cardiovascular Diseasep. 191
2.3.7.1 Conclusionp. 193
2.3.8 Cardiomyopathyp. 193
2.3.8.1 Conclusionp. 194
2.3.9 Cardiac Arrhythmiasp. 194
2.3.9.1 Atrial Arrhythmiasp. 195
2.3.9.2 Ventricular Pre-Excitationp. 196
2.3.9.3 Ventricular Arrhythmiasp. 197
2.3.9.4 Risk Stratification for Malignant Arrhythmias After MIp. 198
2.3.9.5 Conclusionp. 200
2.3.10 Clinical Conclusionsp. 200
Referencesp. 201
2.4 Neuromagnetismp. 210
2.4.1 Introductionp. 210
2.4.2 The Generation of Magnetic Signals by the Brainp. 211
2.4.2.1 Introductionp. 211
2.4.2.2 Technical Development and Limits of Detectionp. 211
2.4.2.3 Electrophysiology of Brain Cellsp. 212
2.4.2.4 Extracellular Spacep. 215
2.4.2.5 Pathophysiologyp. 216
2.4.2.6 Final Remarksp. 217
2.4.3 Analysis of Neuromagnetic Fieldsp. 218
2.4.3.1 Signal Analysisp. 218
2.4.3.2 Modeling and Source Reconstructionp. 222
2.4.4 The Investigation of the Primary Sensory and Motor Systemsp. 230
2.4.4.1 Introductionp. 230
2.4.4.2 Somatosensory Systemp. 230
2.4.4.3 Auditory Systemp. 232
2.4.4.4 Visual Systemp. 232
2.4.4.5 Olfactory and Gustatory Systemp. 234
2.4.4.6 Motor Systemp. 235
2.4.4.7 Perspectivesp. 235
2.4.5 Neuromagnetic Fields and Brain Science: Cognitive Functionsp. 235
2.4.5.1 Brain Correlates of Cognition: Components and Localizationsp. 237
2.4.5.2 Human Communicationp. 238
2.4.5.3 Recognition of Objects: Perceptual Bindingp. 241
2.4.5.4 Actions: Planning, Execution, Perception, and Imageryp. 242
2.4.5.5 Attentionp. 242
2.4.5.6 Memoryp. 243
2.4.5.7 Emotionsp. 244
2.4.6 Clinical Applicationsp. 244
2.4.6.1 Introductionp. 244
2.4.6.2 Somatosensory Evoked Fields (SEFs)p. 244
2.4.6.3 Auditory Evoked Fields (AEFs)p. 247
2.4.6.4 Visually Evoked Magnetic Fields (VEFs)p. 249
2.4.6.5 Language-Related Fields (LRFs)p. 251
2.4.6.6 Spontaneous Brain Activity in Epilepsyp. 251
2.4.6.7 Spontaneous Brain Activity in Structural Brain Lesions and Ischemiap. 255
2.4.6.8 Perspectivesp. 256
Referencesp. 256
2.5 Fetal Magnetographyp. 268
2.5.1 Fetal Magnetocardiographyp. 268
2.5.1.1 Generalp. 268
2.5.1.2 Fetal Cardiac Physiologyp. 268
2.5.1.3 Methodical Approachesp. 269
2.5.1.4 Standards and International Reference Valuesp. 273
2.5.1.5 Monitoring Fetal Cardiac Function: A Brief Comparison of Methodsp. 274
2.5.1.6 Complementary Role in Clinical Diagnosisp. 274
2.5.1.7 Clinical Researchp. 276
2.5.1.8 Perspectivesp. 277
2.5.2 Fetal Magnetoencephalographyp. 279
2.5.2.1 General Aspectsp. 279
2.5.2.2 Development of Sensesp. 281
2.5.2.3 Applications of fMEGp. 282
2.5.2.4 Developmental Aspects of Fetal Evoked Responsesp. 283
2.5.2.5 Perspectivesp. 285
Referencesp. 286
3 Magnetic Resonancep. 291
3.1 Introductionp. 293
3.2 Physical Principles and Technology of Magnetic Resonance Imagingp. 297
3.2.1 Historical Overviewp. 297
3.2.2 Basic Physical Principles of NMRp. 298
3.2.3 The NMR Signalp. 301
3.2.4 Nuclear Relaxationp. 306
3.2.5 Signal-to-Noise Ratiop. 309
3.2.6 Magnetic Resonance Imagingp. 311
3.2.7 Selective Excitationp. 314
3.2.8 Partial Acquisition Techniquesp. 317
3.2.9 Pulse Sequence and Contrastp. 318
3.2.10 Imaging of Flowp. 324
3.2.11 Diffusion Imagingp. 326
3.2.12 MR Spectroscopyp. 327
3.2.13 System Design Considerationsp. 329
3.2.14 Magnetsp. 331
3.2.15 Shimmingp. 334
3.2.16 Gradient Systemp. 335
3.2.17 RF-Systemp. 336
3.2.18 Conclusionsp. 339
Referencesp. 340
3.3 Modern Applications of MRI in Medical Sciencesp. 343
3.3.1 New MRI Techniques for Cardiovascular Imagingp. 343
3.3.1.1 Introductionp. 343
3.3.1.2 Cardiovascular Morphologyp. 343
3.3.1.3 Cardiac Function and Flowp. 344
3.3.1.4 Perfusionp. 349
3.3.1.5 Delayed-Enhancement Imagingp. 351
3.3.1.6 Coronary MR Angiographyp. 352
3.3.1.7 Coronary Artery Wall Imagingp. 357
Referencesp. 359
3.3.2 Functional Magnetic Resonance Imaging (fMRI)p. 362
3.3.2.1 Physiological and Physical Basisp. 362
3.3.2.2 Methods for fMRIp. 363
3.3.2.3 The fMRI Experimentp. 364
3.3.2.4 Data Analysisp. 365
3.3.2.5 Current Results in fMRIp. 36&
3.3.2.6 Perspectivesp. 374
Referencesp. 374
3.3.3 New MRI Techniques for the Detection of Acute Cerebral Ischemiap. 378
3.3.3.1 Introductionp. 378
3.3.3.2 Evolution of DWI Changes in Strokep. 379
3.3.3.3 DWI in Clinical Practicep. 381
3.3.3.4 Improvements and Pulse Sequences for DWI and DTIp. 383
3.3.3.5 Functional DWI in Brain Mappingp. 392
3.3.3.6 Conclusion and Future Outlookp. 393
Referencesp. 393
3.3.4 Clinical Applications at Ultrahigh Fieldsp. 398
3.3.4.1 Potential and Challenges with Ultrahigh Field MRIp. 398
3.3.4.2 Image Characteristics in Normal Brainp. 402
3.3.4.3 Applications for Neuropathologyp. 406
3.3.4.4 Conclusion and Outlookp. 410
Referencesp. 411
3.3.5 Interventional Magnetic Resonance Imaging: Concepts, Systems, and Applicationsp. 416
3.3.5.1 Introductionp. 416
3.3.5.2 Imaging System Developmentp. 417
3.3.5.3 Supplemental Technical Developmentsp. 420
3.3.5.4 Specific Applicationsp. 423
3.3.5.5 Conclusions and Outlookp. 433
Referencesp. 434
3.3.6 New Approaches in Diagnostic and Therapeutic MR Mammographyp. 437
3.3.6.1 Introductionp. 437
3.3.6.2 Diagnostic MR Mammographyp. 438
3.3.6.3 Current Limits and Disadvantagesp. 441
3.3.6.4 New Approaches to Diagnostic MR Mammographyp. 442
3.3.6.5 Minimally Invasive Procedures: Biopsy and Therapyp. 445
3.3.6.6 MRI-Guided Percutaneous Minimally Invasive Therapy of Breast Lesionsp. 447
3.3.5.7 New Perspectivesp. 449
3.3.6.8 Conclusionp. 450
Referencesp. 451
3.3.7 MR Spectroscopyp. 456
3.3.7.1 Introductionp. 456
3.3.7.2 High-Resolution Nuclear Magnetic Resonance Spectroscopy In Vivop. 456
3.3.7.3 Metabolic Information and Clinical Application: In-Vivo [superscript 1]H MRSp. 460
3.3.7.4 Metabolic Information and Clinical Application: In-Vivo [superscript 13]C MRSp. 469
3.3.7.5 Metabolic Information and Clinical Application: In-Vivo [superscript 19]F MRSp. 469
3.3.7.6 Metabolic Information and Clinical Application: In-Vivo [superscript 31]P MRSp. 471
3.3.7.7 Application of MRS in Diagnostics and Clinical Research: Conclusions and Perspectivesp. 472
Referencesp. 474
4 Magnetic Substances and Externally Applied Fieldsp. 477
4.1 Introductionp. 479
Referencesp. 480
4.2 Magnetic Monitoring as a Diagnostic Method for Investigating Motility in the Human Digestive Systemp. 481
4.2.1 Introductionp. 481
4.2.2 Conventional Investigation Methods of the Human GI Tractp. 482
4.2.3 Magnetic Markersp. 483
4.2.3.1 Inverse Monitoringp. 484
4.2.3.2 Theoretical Backgroundp. 484
4.2.3.3 Forward Monitoringp. 485
4.2.4 Magnetic Monitoring Systemsp. 486
4.2.4.1 Magnetic Monitoring with Three Magnetic Sensorsp. 486
4.2.4.2 Magnetic Marker Monitoring Using Biomagnetic Squid Measurement Systemp. 487
4.2.4.3 Magnetic Monitoring with Multiple AMR-Sensorsp. 488
4.2.4.4 Comparison of the Measuring Methodsp. 489
4.2.4.5 Information Content of Magnetic Monitoring Investigationsp. 490
4.2.4.6 Motility Pattern of the GI Systemp. 491
4.2.4.7 Absorption Processes Inside the GI Tractp. 493
4.2.5 Conclusion and Outlookp. 494
Referencesp. 496
4.3 Remote-Controlled Drug Delivery in the Gastrointestinal Tractp. 499
4.3.1 Introductionp. 499
4.3.2 Physical Principles Used or Proposed for Remote Controlled Releasep. 500
4.3.2.1 Capsules Designed for Drug Release under the Guiding or Withholding Influence of a Magnetic Fieldp. 500
4.3.2.2 Capsules Using Mechanical Forces of Magnetic Fields to Open a Containerp. 501
4.3.2.3 Capsule Operation Triggered by an Alternating (AC) Magnetic Fieldp. 501
4.3.2.4 Application of Rotating Magnetic Fieldsp. 503
4.3.3 Discussion and Outlookp. 504
4.3.3.1 Capsules already Used for Animal and Human Studiesp. 504
4.3.3.2 Outlookp. 507
Referencesp. 508
4.4 Magnetic Stimulationp. 511
4.4.1 Introductionp. 511
4.4.2 Historyp. 511
4.4.2.1 History of Magnetic Stimulationp. 511
4.4.2.2 The Beginnings of Magnetic Brain Stimulationp. 512
4.4.3 Principle of Transcranial Magnetic Stimulationp. 513
4.4.3.1 Vectorial and Localized Magnetic Stimulation: A Computer Simulation Studyp. 513
4.4.3.2 Physiological Principlep. 516
4.4.3.3 Functional Mapping of the Human Motor Cortexp. 517
4.4.3.4 Inhibition-Excitation Balancep. 520
4.4.4 Clinical and Preclinical Application of TMSp. 521
4.4.4.1 Targeting Methodp. 521
4.4.4.2 Representative Neurosurgical Casep. 522
4.4.4.3 Cellular-Molecular Levelp. 523
Referencesp. 525
4.5 Liver Iron Susceptometryp. 529
4.5.1 Introductionp. 529
4.5.2 Iron Metabolism and Iron Overloadp. 529
4.5.3 Technical Developments of Biomagnetic Liver Susceptometryp. 531
4.5.3.1 DC-Field Low-T[subscript C] Squid Biosusceptometerp. 531
4.5.3.2 AC-Field Squid Biosusceptometerp. 532
4.5.3.3 Room-Temperature Biosusceptometerp. 534
4.5.3.4 High-T[subscript C] Biosusceptometerp. 534
4.5.4 Physical and Biochemical Basicsp. 535
4.5.5 Magnetostatic Principlesp. 537
4.5.6 Calibration and Validationp. 538
4.5.7 Magnetic Background and Noise Problemsp. 540
4.5.8 Alternative Methodsp. 541
4.5.9 Medical Applicationsp. 542
4.5.9.1 Measurement Proceduresp. 542
4.5.9.2 Primary Hemochromatosisp. 542
4.5.9.3 Iron-Deficiency Anemiap. 543
4.5.9.4 Secondary Hemochromatosisp. 543
4.5.9.5 Long-Term Iron Chelationp. 543
4.5.9.6 Future Applicationsp. 544
4.5.10 Summary and Outlookp. 544
Referencesp. 545
4.6 Magnetic Hyperthermia and Thermoablationp. 550
4.6.1 Introductionp. 550
4.6.2 Physical Principles of Magnetic Particle Heatingp. 551
4.6.2.1 Losses during Magnetization Reversal within the Particlesp. 552
4.6.2.2 Losses Caused by Rotational Motion of Particlesp. 554
4.6.2.3 Thermal Relaxation Effects in Magnetic Nanoparticlesp. 555
4.6.2.4 Eddy Current Effectsp. 558
4.6.3 Physical-Technical Implementation of the Therapyp. 559
4.6.3.1 Demand of Specific Heating Powerp. 559
4.6.3.2 Parameters of the Alternating Magnetic Fieldp. 561
4.6.3.3 Optimization of the Magnetic Materialp. 561
4.6.4 Biomedical Status of Magnetic Particle Hyperthermiap. 564
4.6.4.1 Studies with Animals and Cell Culturesp. 564
4.6.4.2 Application to Human Patientsp. 565
Referencesp. 567
4.7 Magnetic Cell Separation for Research and Clinical Applicationsp. 571
4.7.1 Introductionp. 571
4.7.2 MACS Technologyp. 572
4.7.2.1 The Conceptp. 572
4.7.2.2 Magnetic Separation Strategiesp. 572
4.7.2.3 Magnetic Labeling Strategies and Reagentsp. 574
4.7.2.4 Superparamagnetic MicroBeadsp. 575
4.7.2.5 Column Technology and Research Separatorsp. 576
4.7.2.6 CliniMACS Plus Instrument, and Accessoriesp. 577
4.7.3 Magnetic Cell Sorting for Clinical Applicationsp. 580
4.7.3.1 Stem Cell Enrichment for Graft Engineering in Hematological Disordersp. 580
4.7.3.2 NK Cells: CD56 and CD3p. 583
4.7.3.3 T-Cell Subset Graft Engineering Strategiesp. 583
4.7.3.4 Antigen-Specific T Cells: Cytokine Capture Systemp. 585
4.7.3.5 Dendritic Cells (DC): CD14-derived DC, BDCA-1, BDCA-4p. 586
4.7.3.6 Into the Future: Cardiac Regeneration Using CD133[superscript +] Stem Cellsp. 589
Referencesp. 591
4.8 Magnetic Drug Targetingp. 596
4.8.1 Background and History of Magnetic Drug Targetingp. 596
4.8.2 Regional Chemotherapies for Cancer Treatmentp. 598
4.8.3 Current Applications of Magnetic Drug Targetingp. 599
4.8.3.1 In-Vitro Studiesp. 600
4.8.3.2 In-Vivo Studiesp. 600
4.8.4 Outlookp. 602
Referencesp. 602
4.9 New Fields of Applicationp. 606
4.9.1 Introductionp. 606
4.9.2 Magnetic Particle Imaging (MPI)p. 606
4.9.3 Magnetically Modulated Optical Nanoprobesp. 608
4.9.4 Magnetic Guidancep. 608
4.9.4.1 Small Particles Guided by Extracorporeally Generated Field Gradientsp. 609
4.9.4.2 Field Gradients Generated by Magnetic Implantsp. 610
4.9.4.3 Magnetic Devices Moved by Alternating or Rotating Magnetic Fieldsp. 610
Referencesp. 611
5 Conclusions and Perspectivesp. 613
Indexp. 617