Cover image for Calculation of NMR and EPR parameters : theory and applications
Title:
Calculation of NMR and EPR parameters : theory and applications
Publication Information:
Weinheim : Wiley-VCH, 2004
ISBN:
9783527307791

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010070105 QD96.N8 C34 2004 Open Access Book Book
Searching...
Searching...
30000010080498 QD96.N8 C34 2004 Open Access Book Book
Searching...

On Order

Summary

Summary

This is the first book to present the necessary quantum chemical methods for both resonance types in one handy volume, emphasizing the crucial interrelation between NMR and EPR parameters from a computational and theoretical point of view.
Here, readers are given a broad overview of all the pertinent topics, such as basic theory, methodic considerations, benchmark results and applications for both spectroscopy methods in such fields as biochemistry, bioinorganic chemistry as well as with different substance classes, including fullerenes, zeolites and transition metal compounds. The chapters have been written by leading experts in a given area, but with a wider audience in mind.
The result is the standard reference on the topic, serving as a guide to the best computational methods for any given problem, and is thus an indispensable tool for scientists using quantum chemical calculations of NMR and EPR parameters.
A must-have for all chemists, physicists, biologists and materials scientists who wish to augment their research by quantum chemical calculations of magnetic resonance data, but who are not necessarily specialists in these methods or their applications. Furthermore, specialists in one of the subdomains of this wide field will be grateful to find here an overview of what lies beyond their own area of focus.


Author Notes

Martin Kaupp is Professor at the Institut fur Anorganische Chemie at Universitat Wurzburg
Michael Buhl is Research Associate in the Theoretical Department of the Max-Planck-Institut fur Kohlenforschung in Mulheim/Ruhr (Germany) and lecturer at the University of Wuppertal
Vladimir G. Malkin is a Leading Research Scientist at the Institute of Inorganic Chemistry of the Slovak Academy of Sciences (Bratislava, Slovak Republic)


Table of Contents

Martin Kaupp and Michael Buhl and Vladimir G. MalkinPekka PyykkoFrank Neese and Marketa L. MunzarovaGerald H. LushingtonWerner KutzelniggChristoph van WullenTrygve Helgaker and Magdalena PeculJurgen Gauss and John F. StantonThomas Heine and Gotthard SeifertTorgeir A. Ruden and Kenneth RuudDebra J. Searles and Hanspeter HuberIlaria CiofiniJuha Vaara and Pekka Manninen and Perttu LanttoJochen AutschbachJochen Autschbach and Tom ZieglerChris J. Pickard and Francesco MauriPeter Schwerdtfeger and Markus Pernpointner and Witold NazarewiczMartin KauppOlga L. MalkinaSeongho Moon and Serguei PatchkovskiiDavid A. CaseJanet E. Del BeneHans-Ullrich Siehl and Valerije VrcekZhongfang Chen and Thomas Heine and Paul v. R. Schleyer and Dage SundholmThomas HeineMichael BuhlRoderick E. WasylishenAnnick Goursot and Dorothee BerthomieuMarketa L. MunzarovaBernd EngelsVitaly A. Rassolov and Daniel M. ChipmanSerguei Patchkovskii and Georg SchreckenbachGerald H. LushingtonFrank NeeseFuqiang Ban and James W. Gauld and Russell J. BoydFrank Neese
Forewordp. XIII
List of Contributorsp. XV
Part A Introductory Chapters
1 Introduction: The Quantum Chemical Calculation of NMR and EPR Parametersp. 3
2 Theory of NMR parameters. From Ramsey to Relativity, 1953 to 1983p. 7
2.1 Introductionp. 7
2.2 Spin-Spin Couplingp. 9
2.3 Chemical Shiftsp. 11
2.4 General Aspectsp. 13
2.5 From 1983 to 2003p. 15
3 Historical Aspects of EPR Parameter Calculationsp. 21
4 The Effective Spin Hamiltonian Concept from a Quantum Chemical Perspectivep. 33
5 Fundamentals of Nonrelativistic and Relativistic Theory of NMR and EPR Parametersp. 43
5.1 Introductionp. 43
5.2 Classical Theory of the Interaction of a Charged Particle with an Electromagnetic Fieldp. 44
5.3 Quantum Mechanical Hamiltonians in a Time-Independent Electromagnetic Fieldp. 50
5.4 Perturbation Theory of Magnetic Effectsp. 58
5.5 Non-Relativistic Theory of EPR and NMR Parametersp. 62
5.6 Relativistic Theory of Magnetic Propertiesp. 69
5.7 The Leading Relativistic Correctionsp. 72
5.8 Concluding Remarksp. 81
Part B NMR Parameters, Methodological Aspects
6 Chemical Shifts with Hartree-Fock and Density Functional Methodsp. 85
6.1 Introductionp. 85
6.2 Linear Response and the Gauge Origin Problemp. 88
6.3 Determination of the First-Order Orbitalsp. 90
6.4 Distributed Gauge Origins, IGLO and GIAO Approachesp. 92
6.5 Distributed Gauge Origins in Real Space, a "Continuous Set of Gauge Transformations"p. 96
6.6 Beyond Pure Density Functional Theoryp. 97
6.7 Conclusionsp. 99
7 Spin-Spin Coupling Constants with HF and DFT Methodsp. 101
7.1 Introductionp. 101
7.2 The Calculation of Indirect Nuclear Spin-Spin Coupling Constantsp. 102
7.3 Examples of Applicationsp. 115
7.4 Conclusionsp. 119
8 Electron-Correlated Methods for the Calculation of NMR Chemical Shiftsp. 123
8.1 Introductionp. 123
8.2 Theoretical Backgroundp. 125
8.3 Electron-Correlated Treatment of NMR Chemical Shiftsp. 132
8.4 Special developmentsp. 133
8.5 Numerical Resultsp. 134
8.6 Summary and Outlookp. 136
9 Semiempirical Methods for the Calculation of NMR Chemical Shiftsp. 141
9.1 Introductionp. 141
9.2 Methodsp. 142
9.3 Representative Applicationsp. 147
9.4 Concluding Remarks: Limitations of Semiempirical Methods for the Calculation of NMR Parametersp. 151
10 Ro-Vibrational Corrections to NMR Parametersp. 153
10.1 Introductionp. 153
10.2 Perturbation Theoryp. 154
10.3 Other Approaches for Calculating Vibrationally Averaged NMR Propertiesp. 163
10.4 Examples of Vibrational Contributions to NMR Propertiesp. 164
10.5 Summaryp. 171
11 Molecular Dynamics and NMR Parameter Calculationsp. 175
11.1 Introductionp. 175
11.2 Methodsp. 176
11.3 Examplesp. 182
11.4 Summary and Conclusionsp. 187
12 Use of Continuum Solvent Models in Magnetic Resonance Parameter Calculationsp. 191
12.1 Introductionp. 191
12.2 General Features of Continuum Modelsp. 192
12.3 Applications of Continuum Models to the Prediction of NMR Parametersp. 197
12.4 Applications of Continuum Models to the Prediction of EPR Parametersp. 201
12.5 Conclusionsp. 205
13 Perturbational and ECP Calculation of Relativistic Effects in NMR Shielding and Spin-Spin Couplingp. 209
13.1 Introductionp. 209
13.2 Nuclear Shielding and Spin-Spin Couplingp. 210
13.3 Electronic Hamiltonianp. 211
13.4 Non-Relativistic Contributionsp. 212
13.5 Relativistic Kinematics and the Spin-Zeeman Effectp. 213
13.6 Spin-Orbit Couplingp. 216
13.7 Relativistic Corrections to Shielding and Couplingp. 217
13.8 Conclusionsp. 223
14 Calculation of Heavy-Nucleus Chemical Shifts. Relativistic All-Electron Methodsp. 227
14.1 Introductionp. 227
14.2 Methodological Aspectsp. 229
14.3 Computational Resultsp. 234
14.4 Summaryp. 244
15 Relativistic Calculations of Spin-Spin Coupling Constants of Heavy Nucleip. 249
15.1 Introductionp. 249
15.2 Methodological Aspectsp. 251
15.3 Computational Resultsp. 253
15.4 Summaryp. 262
16 Calculations of Magnetic Resonance Parameters in Solids and Liquids Using Periodic Boundary Conditionsp. 265
16.1 Introductionp. 265
16.2 Cluster Approaches to Extended Systemsp. 265
16.3 The Limitations of the Cluster Approachp. 266
16.4 Infinite Crystals, Periodic Boundary Conditionsp. 267
16.5 Magnetic Resonance Parameters within Periodic Boundary Conditionsp. 267
16.6 Applications of the Planewave-GIPAW Methodp. 272
16.7 Work in Progress and Future Challengesp. 275
16.8 Conclusionp. 276
17 Calculation of Nuclear Quadrupole Coupling Constantsp. 279
17.1 Introductionp. 279
17.2 Nuclear Quadrupole Momentsp. 282
17.3 Field Gradients from Ab Initio Calculationsp. 285
17.4 Field Gradients from Density Functional Calculationsp. 288
18 Interpretation of NMR Chemical Shiftsp. 293
18.1 Introductionp. 293
18.2 Nonrelativistic Casep. 295
18.3 Relativistic Effectsp. 302
18.4 Concluding Remarksp. 305
19 Interpretation of Indirect Nuclear Spin-Spin Coupling Constantsp. 307
19.1 Introductionp. 307
19.2 The Dirac Vector Model of Spin-Spin Couplingp. 309
19.3 Decomposition into Individual Contributionsp. 310
19.4 Visualization of Coupling by Real-Space Functionsp. 318
19.5 Conclusionsp. 323
20 First-Principles Calculations of Paramagnetic NMR Shiftsp. 325
20.1 Introductionp. 325
20.2 Paramagnetic Shielding Tensor: The General Case Treatmentp. 326
20.3 Paramagnetic Shielding for an Isolated Kramers Doublet Statep. 330
20.4 Practical Applicationsp. 333
20.5 Conclusionsp. 337
Part C NMR Parameters, Applications
21 NMR Parameters in Proteins and Nucleic Acidsp. 341
21.1 Introductionp. 341
21.2 Chemical Shifts, Classical Modelsp. 342
21.3 Chemical Shifts Calculations on Polypeptides and Proteinsp. 345
21.4 Chemical Shifts in Nucleic Acidsp. 346
21.5 Indirect Spin-Spin Couplings in Biomoleculesp. 347
21.6 Conclusionsp. 349
22 Characterizing Two-Bond NMR [superscript 13]C-[superscript 15]N, [superscript 15]N-[superscript 15]N, and [superscript 19]F-[superscript 15]N Spin-Spin Coupling Constants across Hydrogen Bonds Using Ab Initio EOM-CCSD Calculationsp. 353
22.1 Introductionp. 353
22.2 Methodsp. 354
22.3 Discussionp. 355
22.4 Concluding Remarksp. 369
23 Calculation of NMR Parameters in Carbocation Chemistryp. 371
23.1 Introductionp. 371
23.2 Alkyl and Cycloalkyl Cationsp. 372
23.3 Bicyclic and Polycyclic Carbocationsp. 379
23.4 Vinyl Cationsp. 382
23.5 [pi]-Stabilized Carbocationsp. 384
23.6 Heteroatom Stabilized Carbocationsp. 388
23.7 Conclusionsp. 391
24 Aromaticity Indices from Magnetic Shieldingsp. 395
24.1 Introductionp. 395
24.2 An Overview of Aromaticity Indices Based on Magnetic Shieldingp. 395
24.3 Applicationsp. 401
24.4 Outlookp. 405
25 Fullerenesp. 409
25.1 Introductionp. 409
25.2 Efficient Computation of NMR Parameters of Fullerenes and Their Derivativesp. 410
25.3 Classical IPR Fullerenesp. 411
25.4 [superscript 13]C NMR Spectra of Isomeric Fullerene Addition Compoundsp. 413
25.5 Endohedral Fullerenesp. 414
25.6 Fullerene Dimers and Dimer-like Compoundsp. 416
25.7 Solid State NMR of Fullerenesp. 418
25.8 Summary and Perspectivesp. 418
26 NMR of Transition Metal Compoundsp. 421
26.1 Introductionp. 421
26.2 Ligand Chemical Shiftsp. 422
26.3 Metal Chemical Shiftsp. 424
26.4 Spin-Spin Coupling Constantsp. 427
26.5 Miscellaneousp. 428
26.6 Conclusion and Outlookp. 429
27 Characterization of NMR Tensors via Experiment and Theoryp. 433
27.1 Introductionp. 433
27.2 Magnetic Shielding and Chemical Shiftsp. 434
27.3 Nuclear Spin-Spin Couplingp. 439
27.4 NMR Spectra of Quadrupolar Nuclei in Solidsp. 443
27.5 Conclusionsp. 444
28 Calculations of Nuclear Magnetic Resonance Parameters in Zeolitesp. 449
28.1 Introductionp. 449
28.2 Theoretical Methodsp. 451
28.3 NMR of Framework Elements: Structure Characterizationp. 453
28.4 [superscript 1]H NMR: Acidity and Proton Transferp. 455
28.5 NMR Studies of Guest Molecules in Zeolites: in situ NMRp. 457
28.6 Conclusionsp. 459
Part D EPR Parameters, Methodological Aspects
29 DFT Calculations of EPR Hyperfine Coupling Tensorsp. 463
29.1 Introductionp. 463
29.2 Theoretical Backgroundp. 464
29.3 The Performance of the Modelp. 467
29.4 Concluding Remarksp. 479
30 Ab Initio Post-Hartree-Fock Calculations of Hyperfine Coupling Tensors and Their Comparison with DFT Approachesp. 483
30.1 Introductionp. 483
30.2 Problems Appearing in MR-CI Computations of A[subscript iso]p. 485
30.3 Error Cancellations in Computations of A[subscript iso] with DFTp. 489
30.4 Concluding Remarksp. 491
31 Alternative Fermi Contact Operators for EPR and NMRp. 493
31.1 Introductionp. 493
31.2 Derivation of New Alternative Operatorsp. 494
31.3 Formal Properties of Short-Range Alternative Operatorsp. 496
31.4 EPR Calculationsp. 499
31.5 NMR Calculationsp. 501
31.6 Conclusionsp. 503
32 Calculation of EPR g-Tensors with Density Functional Theoryp. 505
32.1 Introductionp. 505
32.2 The Physical Origin of the g-Tensorp. 506
32.3 DFT Expressions for g-Tensors of Isolated Moleculesp. 508
32.4 Numerical Performance of the DFT Approachesp. 519
32.5 Summary and Outlookp. 530
33 Ab Initio Calculations of g-Tensorsp. 533
34 Zero-Field Splittingp. 541
34.1 Introductionp. 541
34.2 Zero-Field Splittings in EPR Spectroscopyp. 542
34.3 Theory of Zero-Field Splittingsp. 552
34.4 Calculation of Zero-Field Splittingsp. 557
34.5 Conclusionsp. 561
Part E EPR Parameters, Applications
35 Computation of Hyperfine Coupling Tensors to Complement EPR Experimentsp. 567
35.1 Introductionp. 567
35.2 Insight Gained from a Conventional Ab Initio Approachp. 568
35.3 Benchmark Results Using Conventional Methods on Static Gas-phase Structuresp. 568
35.4 The Performance of Contracted Pople Basis Sets for Small Radicals Consisting Only of First-Row Atomsp. 570
35.5 Density Functional Theory: An Alternative to a Conventional Ab Initio Approachp. 571
35.6 Consideration of Environmental Effectsp. 572
35.7 Illustration of the Applications of DFT Methods to Biological Radicalsp. 574
35.8 Summaryp. 578
36 Applications to EPR in Bioinorganic Chemistryp. 581
36.1 Introductionp. 581
36.2 Biological Metal Sitesp. 582
36.3 Concluding Remarkp. 589
Indexp. 593