Cover image for Bezier and splines in image processing and machine vision
Title:
Bezier and splines in image processing and machine vision
Personal Author:
Edition:
1st ed.
Publication Information:
London : Springer-Verlag, 2008
Physical Description:
xvii, 246 p. : ill. (some col.) ; 25 cm.
ISBN:
9781846289569

9781846289576
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010177505 QA76 B574 2008 Open Access Book Book
Searching...

On Order

Summary

Summary

Digital image processing and machine vision have grown considerably during the last few decades. Of the various techniques, developed so far, splines play a significant role in many of them. This book deals with various image processing and machine vision problems efficiently with splines and includes: the significance of Bernstein Polynomial in splines, detailed coverage of Beta-splines applications which are relatively new, Splines in motion tracking, various deformative models and their uses.

Finally the book covers wavelet splines which are efficient and effective in different image applications.


Author Notes

Dr Sambhunath Biswas is a system analyst at the Indian Statistical Institute, Calcutta where he teaches Machine Vision in M Tech (Computer Science)
Professor Brian Lovell is a Research Leader in National ICT Australia and Research Director of the Intelligent Real-Time Imaging and Sensing Research Group at the University of Queensland


Table of Contents

Part I Early Background
1 Bernstein Polynomial and Bezier-Bernstein Splinep. 3
1.1 Introductionp. 3
1.2 Significance of Bernstein Polynomial in Splinesp. 3
1.3 Bernstein Polynomialp. 5
1.3.1 Determination of the Order of the Polynomialp. 6
1.3.2 Bezier-Bernstein Polynomialp. 8
1.4 Use in Computer Graphics and Image Data Approximationp. 9
1.4.1 Bezier-Bernstein Curvesp. 10
1.4.2 Bezier-Bernstein Surfacesp. 13
1.4.3 Curve and Surface Designp. 13
1.4.4 Approximation of Binary Imagesp. 14
1.5 Key Pixels and Contour Approximationp. 15
1.5.1 Key Pixelsp. 15
1.5.2 Detection of Inflection Pointsp. 21
1.6 Regeneration Techniquep. 23
1.6.1 Method 1p. 23
1.6.2 Method 2p. 24
1.6.3 Recursive Computation Algorithmp. 25
1.6.4 Implementation Strategiesp. 26
1.7 Approximation Capability and Effectivenessp. 28
1.8 Concluding Remarksp. 31
2 Image Segmentationp. 33
2.1 Introductionp. 33
2.2 Two Different Concepts of Segmentationp. 33
2.2.1 Contour-based Segmentationp. 34
2.2.2 Region-based Segmentationp. 35
2.3 Segmentation for Compressionp. 35
2.4 Extraction of Compact Homogeneous Regionsp. 36
2.4.1 Partition/Decomposition Principle for Gray Imagesp. 41
2.4.2 Approximation Problemp. 43
2.4.3 Polynomial Order Determinationp. 44
2.4.4 Algorithmsp. 46
2.4.5 Merging of Small Regionsp. 47
2.5 Evaluation of Segmentationp. 48
2.6 Comparison with Multilevel Thresholding Algorithmsp. 50
2.6.1 Results and Discussionp. 51
2.7 Some Justifications for Image Data Compressionp. 52
2.8 Concluding Remarksp. 55
3 1-d B-B Spline Polynomial and Hilbert Scan for Graylevel Image Codingp. 57
3.1 Introductionp. 57
3.2 Hilbert Scanned Imagep. 58
3.2.1 Construction of Hilbert Curvep. 58
3.3 Shortcomings of Bernstein Polynomial and Error of Approximationp. 63
3.4 Approximation Techniquep. 64
3.4.1 Bezier-Bernstein (B-B) Polynomialp. 64
3.4.2 Algorithm 1: Approximation Criteria of f(t)p. 65
3.4.3 Implementation Strategyp. 67
3.4.4 Algorithm 2p. 69
3.5 Image Data Compressionp. 70
3.5.1 Discriminating Features of the Algorithmsp. 71
3.6 Regenerationp. 72
3.7 Results and Discussionp. 73
3.8 Concluding Remarksp. 81
4 Image Compressionp. 83
4.1 Introductionp. 83
4.2 SLIC: Subimage-based Lossy Image Compressionp. 84
4.2.1 Approximation and Choice of Weightsp. 88
4.2.2 Texture Codingp. 90
4.2.3 Contour Codingp. 91
4.3 Quantitative Assessment for Reconstructed Imagesp. 95
4.4 Results and Discussionp. 98
4.4.1 Results of SLIC Algorithm for 64 X 64 Imagesp. 99
4.4.2 Results of SLIC Algorithm for 256 X 256 Imagesp. 101
4.4.3 Effect of the Increase of Spatial Resolution on Compression and Qualityp. 103
4.5 Concluding Remarksp. 106
Part II Intermediate Steps
5 B-Splines and Its Applicationsp. 109
5.1 Introductionp. 109
5.2 B-Spline Functionp. 110
5.2.1 B-Spline Knot Structure for Uniform, Open Uniform, and Nonuniform Basisp. 110
5.3 Computation of B-Spline Basis Functionsp. 112
5.3.1 Computation of Uniform Periodic B-spline Basisp. 113
5.4 B-Spline Curves on Unit Intervalp. 114
5.4.1 Properties of B-Spline Curvesp. 117
5.4.2 Effect of Multiplicityp. 117
5.4.3 End Conditionp. 117
5.5 Rational B-Spline Curvep. 118
5.5.1 Homogeneous Coordinatesp. 118
5.5.2 Essentials of Rational B-Spline Curvesp. 120
5.6 B-Spline Surfacep. 121
5.7 Applicationp. 121
5.7.1 Differential Invariants of Image Velocity Fieldsp. 121
5.7.2 3D Shape and Viewer Ego-motionp. 123
5.7.3 Geometric Significancep. 124
5.7.4 Constraintsp. 125
5.7.5 Extraction of Differential Invariantsp. 127
5.8 Recovery of Time to Contact and Surface Orientationp. 129
5.8.1 Braking and Object Manipulationp. 129
5.9 Concluding Remarksp. 130
6 Beta-Splines: A Flexible Modelp. 133
6.1 Introductionp. 133
6.2 Beta-Spline Curvep. 133
6.3 Design Criteria for a Curvep. 136
6.3.1 Shape Parametersp. 138
6.3.2 End Conditions of Beta Spline Curvesp. 138
6.4 Beta-Spline Surfacep. 141
6.5 Possible Applications in Visionp. 142
6.6 Concluding Remarksp. 142
Part III Advanced Methodologies
7 Discrete Splines and Visionp. 145
7.1 Introductionp. 145
7.2 Discrete Splinesp. 145
7.2.1 Relation Between [alpha subscript i,k] and B[subscript i,k], k > 2p. 148
7.2.2 Some Properties of [alpha subscript i,k](j)p. 151
7.2.3 Algorithmsp. 152
7.3 Subdivision of Control Polygonp. 154
7.4 Smoothing Discrete Splines and Visionp. 155
7.5 Occluding Boundaries and Shape from Shadingp. 155
7.5.1 Image Irradiance Equationp. 156
7.5.2 Method Based on Regularizationp. 157
7.5.3 Discrete Smoothing Splinesp. 157
7.5.4 Necessary Condition and the System of Equationsp. 158
7.5.5 Some Important Points About DSSp. 159
7.6 A Provably Convergent Iterative Algorithmp. 159
7.6.1 Convergencep. 160
7.7 Concluding Remarksp. 161
8 Spline Wavelets: Construction, Implication, and Usesp. 163
8.1 Introductionp. 163
8.2 Cardinal Splinesp. 164
8.2.1 Cardinal B-Spline Basis and Riesz Basisp. 167
8.2.2 Scaling and Cardinal B-Spline Functionsp. 170
8.3 Waveletsp. 172
8.3.1 Continuous Wavelet Transformp. 172
8.3.2 Properties of Continuous Wavelet Transformp. 173
8.4 A Glimpse of Continuous Waveletsp. 174
8.4.1 Basic Waveletsp. 174
8.5 Multiresolution Analysis and Wavelet Basesp. 176
8.6 Spline Approximationsp. 179
8.6.1 Battle-Lemarie Waveletsp. 181
8.7 Biorthogonal Spline Waveletsp. 182
8.8 Concluding Remarksp. 184
9 Snakes and Active Contoursp. 187
9.1 Introductionp. 187
9.1.1 Splines and Energy Minimization Techniquesp. 187
9.2 Classical Snakesp. 189
9.3 Energy Functionalp. 190
9.4 Minimizing the Snake Energy Using the Calculus of Variationsp. 194
9.5 Minimizing the Snake Energy Using Dynamic Programmingp. 196
9.6 Problems and Pitfallsp. 207
9.7 Connected Snakes for Advanced Segmentationp. 207
9.8 Conclusionsp. 211
10 Globally Optimal Energy Minimization Techniquesp. 213
10.1 Introduction and Timelinep. 213
10.2 Cell Image Segmentation Using Dynamic Programmingp. 214
10.3 Globally Optimal Geodesic Active Contours (GOGAC)p. 219
10.3.1 Fast Marching Algorithmp. 221
10.4 Globally Minimal Surfaces (GMS)p. 224
10.4.1 Minimum Cuts and Maximum Flowsp. 225
10.4.2 Development of the GMS Algorithmp. 227
10.4.3 Applications of the GMS Algorithmp. 229
10.5 Conclusionsp. 233
Referencesp. 235
Indexp. 245