Cover image for Rough-fuzzy pattern recognition : applications in bioinformatics and medical imaging
Title:
Rough-fuzzy pattern recognition : applications in bioinformatics and medical imaging
Personal Author:
Series:
Wiley series in bioinformatics: computational techniques and engineering

Wiley series on bioinformatics
Publication Information:
Hoboken, N.J. : John Wiley & Sons, c2012
Physical Description:
xxi, 289 p. : ill. ; 25 cm.
ISBN:
9781118004401
Abstract:
"This book provides a unified framework describing how rough-fuzzy computing techniques can be formulated and used in building efficient pattern recognition models. Based on the existing as well as new results, the book is structured according to the major phases of a pattern recognition system (e.g., classification, clustering, and feature selection) with a balanced mixture of theory, algorithm and applications. Special emphasis has been given to applications in bioinformatics and medical image processing. The book is useful for graduate students and researchers in computer science, electrical engineering, system science, medical science, and information technology. Researchers and practitioners in industry and R&D laboratories will also benefit"-- Provided by publisher.

"The proposed volume provides a unified framework describing how rough-fuzzy computing techniques can be judiciously formulated and used in building efficient pattern recognition models"-- Provided by publisher.
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010301784 R859.7.F89 M35 2012 Open Access Book Book
Searching...

On Order

Summary

Summary

Learn how to apply rough-fuzzy computing techniques to solve problems in bioinformatics and medical image processing

Emphasizing applications in bioinformatics and medical image processing, this text offers a clear framework that enables readers to take advantage of the latest rough-fuzzy computing techniques to build working pattern recognition models. The authors explain step by step how to integrate rough sets with fuzzy sets in order to best manage the uncertainties in mining large data sets. Chapters are logically organized according to the major phases of pattern recognition systems development, making it easier to master such tasks as classification, clustering, and feature selection.

Rough-Fuzzy Pattern Recognition examines the important underlying theory as well as algorithms and applications, helping readers see the connections between theory and practice. The first chapter provides an introduction to pattern recognition and data mining, including the key challenges of working with high-dimensional, real-life data sets. Next, the authors explore such topics and issues as:

Soft computing in pattern recognition and data mining A mathematical framework for generalized rough sets, incorporating the concept of fuzziness in defining the granules as well as the set Selection of non-redundant and relevant features of real-valued data sets Selection of the minimum set of basis strings with maximum information for amino acid sequence analysis Segmentation of brain MR images for visualization of human tissues

Numerous examples and case studies help readers better understand how pattern recognition models are developed and used in practice. This text--covering the latest findings as well as directions for future research--is recommended for both students and practitioners working in systems design, pattern recognition, image analysis, data mining, bioinformatics, soft computing, and computational intelligence.


Author Notes

Pradipta Maji, PhD, is Assistant Professor in the Machine Intelligence Unit of the Indian Statistical Institute. His research explores pattern recognition, bioinformatics, medical image processing, cellular automata, and soft computing.
Sankar K. Pal, PhD, is Director and Distinguished Scientist of the Indian Statistical Institute. He is also a J. C. Bose Fellow of the Government of India. Dr. Pal founded both the Machine Intelligence Unit and the Center for Soft Computing Research at the Indian Statistical Institute. He is a Fellow of the IEEE, IAPR, IFSA, TWAS, and Indian National Science Academy.


Table of Contents

Forewordp. xiii
Prefacep. xv
About the Authorsp. xix
1 Introduction to Pattern Recognition and Data Miningp. 1
1.1 Introductionp. 1
1.2 Pattern Recognitionp. 3
1.2.1 Data Acquisitionp. 4
1.2.2 Feature Selectionp. 4
1.2.3 Classification and Clusteringp. 5
1.3 Data Miningp. 6
1.3.1 Tasks, Tools, and Applicationsp. 7
1.3.2 Pattern Recognition Perspectivep. 8
1.4 Relevance of Soft Computingp. 9
1.5 Scope and Organization of the Bookp. 10
Referencesp. 14
2 Rough-Fuzzy Hybridization and Granular Computingp. 21
2.1 Introductionp. 21
2.2 Fuzzy Setsp. 22
2.3 Rough Setsp. 23
2.4 Emergence of Rough-Fuzzy Computingp. 26
2.4.1 Granular Computingp. 26
2.4.2 Computational Theory of Perception and f-Granulationp. 26
2.4.3 Rough-Fuzzy Computingp. 28
2.5 Generalized Rough Setsp. 29
2.6 Entropy Measuresp. 30
2.7 Conclusion and Discussionp. 36
Referencesp. 37
3 Rough-Fuzzy Clustering: Generalized c-Means Algorithmp. 47
3.1 Introductionp. 47
3.2 Existing c-Means Algorithmsp. 49
3.2.1 Hard c-Meansp. 49
3.2.2 Fuzzy c-Meansp. 50
3.2.3 Possibilistic c-Meansp. 51
3.2.4 Rough c-Meansp. 52
3.3 Rough-Fuzzy-Possibilistic c-Meansp. 53
3.3.1 Objective Functionp. 54
3.3.2 Cluster Prototypesp. 55
3.3.3 Fundamental Propertiesp. 56
3.3.4 Convergence Conditionp. 57
3.3.5 Details of the Algorithmp. 59
3.3.6 Selection of Parametersp. 60
3.4 Generalization of Existing c-Means Algorithmsp. 61
3.4.1 RFCM: Rough-Fuzzy c-Meansp. 61
3.4.2 RPCM: Rough-Possibilistic c-Meansp. 62
3.4.3 RCM: Rough c-Meansp. 63
3.4.4 FPCM: Fuzzy-Possibilistic c-Meansp. 64
3.4.5 FCM: Fuzzy c-Meansp. 64
3.4.6 PCM: Possibilistic c-Meansp. 64
3.4.7 HCM: Hard c-Meansp. 65
3.5 Quantitative Indices for Rough-Fuzzy Clusteringp. 65
3.5.1 Average Accuracy, ¿ Indexp. 65
3.5.2 Average Roughness, ¿ Indexp. 67
3.5.3 Accuracy of Approximation, ¿* Indexp. 67
3.5.4 Quality of Approximation, ¿ Indexp. 68
3.6 Performance Analysisp. 68
3.6.1 Quantitative Indicesp. 68
3.6.2 Synthetic Data Set: X32p. 69
3.6.3 Benchmark Data Setsp. 70
3.7 Conclusion and Discussionp. 80
Referencesp. 81
4 Rough-Fuzzy Granulation and Pattern Classificationp. 85
4.1 Introductionp. 85
4.2 Pattern Classification Modelp. 87
4.2.1 Class-Dependent Fuzzy Granulationp. 88
4.2.2 Rough-Set-Based Feature Selectionp. 90
4.3 Quantitative Measuresp. 95
4.3.1 Dispersion Measurep. 95
4.3.2 Classification Accuracy, Precision, and Recallp. 96
4.3.3 ¿ Coefficientp. 96
4.3.4 ß Indexp. 97
4.4 Description of Data Setsp. 97
4.4.1 Completely Labeled Data Setsp. 98
4.4.2 Partially Labeled Data Setsp. 99
4.5 Experimental Resultsp. 100
4.5.1 Statistical Significance Testp. 102
4.5.2 Class Prediction Methodsp. 103
4.5.3 Performance on Completely Labeled Datap. 103
4.5.4 Performance on Partially Labeled Datap. 110
4.6 Conclusion and Discussionp. 112
Referencesp. 114
5 Fuzzy-Rough Feature Selection using f-Information Measuresp. 117
5.1 Introductionp. 117
5.2 Fuzzy-Rough Setsp. 120
5.3 Information Measure on Fuzzy Approximation Spacesp. 121
5.3.1 Fuzzy Equivalence Partition Matrix and Entropyp. 121
5.3.2 Mutual Informationp. 123
5.4 f-Information and Fuzzy Approximation Spacesp. 125
5.4.1 V-Informationp. 125
5.4.2 I ¿ -Informationp. 126
5.4.3 M ¿ -Informationp. 127
5.4.4 ¿ ¿ -Informationp. 127
5.4.5 Hellinger Integralp. 128
5.4.6 Renyi Distancep. 128
5.5 f-Information for Feature Selectionp. 129
5.5.1 Feature Selection Using f-Informationp. 129
5.5.2 Computational Complexityp. 130
5.5.3 Fuzzy Equivalence Classesp. 131
5.6 Quantitative Measuresp. 133
5.6.1 Fuzzy-Rough-Set-Based Quantitative Indicesp. 133
5.6.2 Existing Feature Evaluation Indicesp. 133
5.7 Experimental Resultsp. 135
5.7.1 Description of Data Setsp. 136
5.7.2 Illustrative Examplep. 137
5.7.3 Effectiveness of the FEPM-Based Methodp. 138
5.7.4 Optimum Value of Weight Parameter ßp. 141
5.7.5 Optimum Value of Multiplicative Parameter ¿p. 141
5.7.6 Performance of Different f-Information Measuresp. 145
5.7.7 Comparative Performance of Different Algorithmsp. 152
5.8 Conclusion and Discussionp. 156
Referencesp. 156
6 Rough Fuzzy c-Medoids and Amino Acid Sequence Analysisp. 161
6.1 Introductionp. 161
6.2 Bio-Basis Function and String Selection Methodsp. 164
6.2.1 Bio-Basis Functionp. 164
6.2.2 Selection of Bio-Basis Strings Using Mutual Informationp. 166
6.2.3 Selection of Bio-Basis Strings Using Fisher Ratiop. 167
6.3 Fuzzy-Possibilistic c-Medoids Algorithmp. 168
6.3.1 Hard c-Medoidsp. 168
6.3.2 Fuzzy c-Medoidsp. 169
6.3.3 Possibilistic c-Medoidsp. 170
6.3.4 Fuzzy-Possibilistic c-Medoidsp. 171
6.4 Rough-Fuzzy c-Medoids Algorithmp. 172
6.4.1 Rough c-Medoidsp. 172
6.4.2 Rough-Fuzzy c-Medoidsp. 174
6.5 Relational Clustering for Bio-Basis String Selectionp. 176
6.6 Quantitative Measuresp. 178
6.6.1 Using Homology Alignment Scorep. 178
6.6.2 Using Mutual Informationp. 179
6.7 Experimental Resultsp. 181
6.7.1 Description of Data Setsp. 181
6.7.2 Illustrative Examplep. 183
6.7.3 Performance Analysisp. 184
6.8 Conclusion and Discussionp. 196
Referencesp. 196
7 Clustering Functionally Similar Genes from Microarray Datap. 201
7.1 Introductionp. 201
7.2 Clustering Gene Expression Datap. 203
7.2.1 it-Means Algorithmp. 203
7.2.2 Self-Organizing Mapp. 203
7.2.3 Hierarchical Clusteringp. 204
7.2.4 Graph-Theoretical Approachp. 204
7.2.5 Model-Based Clusteringp. 205
7.2.6 Density-Based Hierarchical Approachp. 206
7.2.7 Fuzzy Clusteringp. 206
7.2.8 Rough-Fuzzy Clusteringp. 206
7.3 Quantitative and Qualitative Analysisp. 207
7.3.1 Silhouette Indexp. 207
7.3.2 Eisen and Cluster Profile Plotsp. 207
7.3.3 Z Scorep. 208
7.3.4 Gene-Ontology-Based Analysisp. 208
7.4 Description of Data Setsp. 209
7.4.1 Fifteen Yeast Datap. 209
7.4.2 Yeast Sporulationp. 211
7.4.3 Auble Datap. 211
7.4.4 Cho et al. Datap. 211
7.4.5 Reduced Cell Cycle Datap. 211
7.5 Experimental Resultsp. 212
7.5.1 Performance Analysis of Rough-Fuzzy c-Meansp. 212
7.5.2 Comparative Analysis of Different c-Meansp. 212
7.5.3 Biological Significance Analysisp. 215
7.5.4 Comparative Analysis of Different Algorithmsp. 215
7.5.5 Performance Analysis of Rough-Fuzzy-Possibilistic c-Meansp. 217
7.6 Conclusion and Discussionp. 217
Referencesp. 220
8 Selection of Discriminative Genes from Microarray Datap. 225
8.1 Introductionp. 225
8.2 Evaluation Criteria for Gene Selectionp. 227
8.2.1 Statistical Testsp. 228
8.2.2 Euclidean Distancep. 228
8.2.3 Pearson's Correlationp. 229
8.2.4 Mutual Informationp. 229
8.2.5 f-Information Measuresp. 230
8.3 Approximation of Density Functionp. 230
8.3.1 Discretizationp. 231
8.3.2 Parzen Window Density Estimatorp. 231
8.3.3 Fuzzy Equivalence Partition Matrixp. 233
8.4 Gene Selection using Information Measuresp. 234
8.5 Experimental Resultsp. 235
8.5.1 Support Vector Machinep. 235
8.5.2 Gene Expression Data Setsp. 236
8.5.3 Performance Analysis of the FEPMp. 236
8.5.4 Comparative Performance Analysisp. 250
8.6 Conclusion and Discussionp. 250
Referencesp. 252
9 Segmentation of Brain Magnetic Resonance Imagesp. 257
9.1 Introductionp. 257
9.2 Pixel Classification of Brain MR Imagesp. 259
9.2.1 Performance on Real Brain MR Imagesp. 260
9.2.2 Performance on Simulated Brain MR Imagesp. 263
9.3 Segmentation of Brain MR Imagesp. 264
9.3.1 Feature Extractionp. 265
9.3.2 Selection of Initial Prototypesp. 274
9.4 Experimental Resultsp. 277
9.4.1 Illustrative Examplep. 277
9.4.2 Importance of Homogeneity and Edge Valuep. 278
9.4.3 Importance of Discriminant Analysis-Based Initializationp. 279
9.4.4 Comparative Performance Analysisp. 280
9.5 Conclusion and Discussionp. 283
Referencesp. 283
Indexp. 287