Cover image for Chalcogenide photovoltaics : physics, technologies, and thin film devices
Title:
Chalcogenide photovoltaics : physics, technologies, and thin film devices
Personal Author:
Publication Information:
Weinheim : Wiley-VCH ; Chichester : John Wiley [distributor], c2011
Physical Description:
xv, 368 p. : ill. ; 24 cm.
ISBN:
9783527314591

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010235899 TK8322 S35 2011 Open Access Book Book
Searching...
Searching...
33000000000792 TK8322 S35 2011 Open Access Book Book
Searching...

On Order

Summary

Summary

This first comprehensive description of the most important material properties and device aspects closes the gap between general books on solar cells and journal articles on chalcogenide-based photovoltaics.

Written by two very renowned authors with years of practical experience in the field, the book covers II-VI and I-III-VI2 materials as well as energy conversion at heterojunctions. It also discusses the latest semiconductor heterojunction models and presents modern analysis concepts. Thin film technology is explained with an emphasis on current and future techniques for mass production, and the book closes with a compendium of failure analysis in photovoltaic thin film modules.

With its overview of the semiconductor physics and technology needed, this practical book is ideal for students, researchers, and manufacturers, as well as for the growing number of engineers and researchers working in companies and institutes on chalcogenide photovoltaics.


Author Notes

Roland Scheer received his diploma degree in electronic engineering from the University of Applied Sciences Berlin, Germany. He joined AEG Konstanz, Germany, in 1983 as electronic engineer. In parallel, he studied physics at the University of Konstanz and at the Technical University of Berlin where he received his physics diploma in 1990. In 1994, he finished his doctoral thesis in physics and joined the Helmholtz-Centre (former Hahn-Meitner Institute) in Berlin. His RD activities are focused on thin film solar ceils where he invented a new solar cell based on CulnS2. In 2002, Roland Scheer was visiting scientist at the Advanced institute for Science and Technology (AIST) in Tsukuba, Japan. He was lecturer at the University of Potsdam until in 2010 he became full professor holding the endowed chair for photovoltaics at the Martin-Luther-University in Halle-Wittenberg.
Hans-Werner Schock became head of the Institute of Technology at the Helmholtz Zentrum Berlin fr Materialien und Energie (former Hahn-Meitner Institute) in the division "Solar Energy Research" in late 2004. He received his diploma in electrical engineering in 1974 and obtained his PhD in electrical engineering from Stuttgart University, Germany, in 1986. Starting in the early 70s, he has taken the development of chalcogenide solar cells from basic investigations to the transfer to a pilot fabrication plant. From 1986 to 2003 he coordinated the research on chalcopyrite based solar cells in the framework of the European photovoltaic program. From 1982 to 2004 he was head of the compound semiconductor thin film group of the Institute of Physical Electronics at the University of Stuttgart. He is author or co-author of more than 300 contributions in books, scientific journals and published conference proceedings. For his achievements in the development of chalcopyrite based solar cells he received the prestigious "Becquerel Prize" in 2010.


Table of Contents

Prefacep. XI
Symbols and Acronymsp. XIII
1 Introductionp. 1
1.1 History of Cu(In,Ga)(S,Se) 2 Solar Cellsp. 1
1.1.1 Milestones of Cu(In,Ga)(S,Se) 2 Developmentp. 3
1.2 History of CdTe Solar Cellsp. 5
1.2.1 Milestones of CdTe Developmentp. 6
1.3 Prospects of Chalcogenide Photovoltaicsp. 7
2 Thin Film Heterostructuresp. 9
2.1 Energies and Potentialsp. 9
2.2 Charge Densities and Fluxesp. 11
2.3 Energy Band Diagramsp. 13
2.3.1 Rules and Conventionsp. 13
2.3.2 Absorber/Windowp. 17
2.3.3 Absorber/Buffer/Windowp. 20
2.3.4 Interface Statesp. 24
2.3.5 Interface Dipolesp. 29
2.3.6 Deep Bulk Statesp. 29
2.3.7 Bandgap Gradientsp. 32
2.4 Diode Currentsp. 36
2.4.1 Superposition Principle and Shifting Approximationp. 36
2.4.2 Regions of Recombinationp. 37
2.4.3 Radiative Recombinationp. 40
2.4.4 Auger Recombinationp. 43
2.4.5 Defect Related Recombinationp. 44
2.4.5.1 SCR Recombinationp. 50
2.4.5.2 QNR Recombinationp. 60
2.4.5.3 Back Surface Recombinationp. 62
2.4.5.4 Interface Recombinationp. 63
2.4.6 Parallel Processesp. 73
2.4.6.1 SCR and QNR Recombinationp. 73
2.4.6.2 SCR and IF Recombinationp. 75
2.4.7 Barriers for Diode Currentp. 76
2.4.8 Bias Dependencep. 78
2.4.9 Non-Homogeneitiesp. 79
2.5 Light Generated Currentsp. 80
2.5.1 Generation Currentsp. 81
2.5.2 Generation Functionp. 84
2.5.3 Photo Currentp. 86
2.5.4 Collection Functionp. 87
2.5.4.1 Absorber Quasi Neutral Regionp. 87
2.5.4.2 QNR with Graded Bandgapp. 90
2.5.4.3 QNR with Back Surface Fieldp. 91
2.5.4.4 Absorber Space Charge Regionp. 92
2.5.4.5 Buffer Layerp. 94
2.5.4.6 Simulating the Collection Functionp. 95
2.5.5 Quantum Efficiency and Charge Collection Efficiencyp. 96
2.5.6 Barriers for Photo Currentp. 97
2.5.7 Voltage Dependence of Photo Currentp. 99
2.5.7.1 Width of SCRp. 99
2.5.7.2 Interface Recombinationp. 100
2.5.7.3 Photo Current Barriersp. 100
2.6 Device Analysis and Parametersp. 101
2.6.1 Equivalent Circuitsp. 101
2.6.1.1 DC Equivalent Circuitp. 101
2.6.1.2 AC Equivalent Circuitp. 103
2.6.1.3 Module Equivalent Circuitp. 105
2.6.2 Current-Voltage Analysisp. 107
2.6.2.1 External Collection Efficiencyp. 107
2.6.2.2 Diode Parametersp. 108
2.6.2.3 Open Circuit Voltagep. 112
2.6.2.4 Fill Factorp. 116
2.6.3 Capacitance-Voltage Analysisp. 119
2.6.4 Admittance Spectroscopyp. 122
3 Design Rules for Heterostructure Solar Cells and Modulesp. 129
3.1 Absorber Bandgapp. 129
3.2 Band Alignmentp. 131
3.3 Emitter Doping and Doping Ratiop. 137
3.4 Fermi Level Pinningp. 140
3.5 Absorber Dopingp. 142
3.6 Absorber Thicknessp. 147
3.7 Grain Boundariesp. 150
3.8 Back Contact Barrierp. 156
3.9 Buffer Thicknessp. 159
3.10 Front Surface Gradientp. 162
3.11 Back Surface Gradientsp. 165
3.12 Monolithic Series Interconnectionp. 171
4 Thin Film Material Propertiesp. 175
4.1 A II -B VI Absorbersp. 175
4.1.1 Physico-Chemical Propertiesp. 175
4.1.2 Lattice Dynamicsp. 179
4.1.3 Electronic Propertiesp. 180
4.1.3.1 Practical Doping Limitsp. 180
4.1.3.2 Defect Spectroscopyp. 182
4.1.3.3 Minority Carrier Lifetimep. 182
4.1.4 Optical Propertiesp. 185
4.1.4.1 CdTep. 185
4.1.4.2 Multinary Phasesp. 187
4.1.5 Surface Propertiesp. 188
4.1.6 Properties of Grain Boundariesp. 189
4.2 A I -B III -C 2 VI Absorbersp. 192
4.2.1 Physico-Chemical Propertiesp. 193
4.2.1.1 Ternary Phase Diagramsp. 193
4.2.1.2 Multinary Phasesp. 198
4.2.1.3 Diffusion Coefficientsp. 200
4.2.2 Lattice Dynamicsp. 201
4.2.3 Electronic Propertiesp. 203
4.2.3.1 Single Point Defectsp. 204
4.2.3.2 Defect Complexesp. 209
4.2.3.3 Defect Spectroscopyp. 210
4.2.3.4 Practical Doping Limitsp. 214
4.2.3.5 Carrier Mobilityp. 215
4.2.3.6 Minority Carrier lifetimep. 216
4.2.4 Optical Propertiesp. 216
4.2.4.1 Ternary Semiconductorsp. 217
4.2.4.2 Multinary Semiconductorsp. 218
4.2.5 Surface Propertiesp. 220
4.2.5.1 Surface Compositionp. 220
4.2.5.2 Surface Electronicsp. 222
4.2.6 Properties of Grain Boundariesp. 224
4.3 Buffer Layersp. 226
4.4 Window Layersp. 226
4.4.1 Low Resistance Windowsp. 226
4.4.2 High Resistance Windowsp. 230
4.5 Interfacesp. 230
5 Thin Film Technologyp. 235
5.1 CdTe Cells and Modulesp. 235
5.1.1 Substratesp. 235
5.1.2 Window Layers for CdTe Cellsp. 236
5.1.3 Buffer Layers for CdTe Cellsp. 237
5.1.4 CdTe Absorber Layerp. 240
5.1.5 Activation by Chlorine Treatmentp. 243
5.1.6 Influence of Oxygenp. 245
5.1.7 Influence of Copperp. 246
5.1.8 Back Contactp. 249
5.1.8.1 Surface Modificationp. 249
5.1.8.2 Primary and Secondary Contactsp. 250
5.1.9 Module Fabrication and Life Cycle Analysisp. 251
5.2 Cu(In,Ga)(S,Se) 2 Cells and Modulesp. 252
5.2.1 Substratesp. 253
5.2.2 Back Contactsp. 253
5.2.3 Cu(In,Ga)(S,Se) 2 Absorber Layersp. 255
5.2.3.1 Co-evaporationp. 257
5.2.3.2 Deposition Reactionp. 260
5.2.3.3 Sputteringp. 262
5.2.3.4 Epitaxy, Chemical Vapor Deposition, and Vapor Transport Processesp. 262
5.2.4 Influence of Sodiump. 262
5.2.5 Influence of Galliump. 265
5.2.6 Influence of Sulfurp. 265
5.2.7 Influence of Oxygenp. 266
5.2.8 Buffer Layers of CIGSp. 268
5.2.8.1 Chemical Bath Deposited CdSp. 268
5.2.8.2 Alternative Buffer Layersp. 270
5.2.9 Window Layers of CIGSp. 272
5.2.10 Module Fabricationp. 273
6 Photovoltaic Properties of Standard Devicesp. 277
6.1 CdTe Device Propertiesp. 277
6.1.1 Solar Cell Parametersp. 277
6.1.2 Diode Currentsp. 277
6.1.3 Collection Functionsp. 279
6.1.4 Device Anomaliesp. 280
6.1.5 Transient Effects and Metastabilityp. 281
6.1.6 Device Modelp. 282
6.1.7 Stabilityp. 285
6.2 A I -B III -C 2 VI Device Propertiesp. 286
6.2.1 Solar Cell Parametersp. 286
6.2.2 Diode Currentsp. 288
6.2.3 Collection Functionp. 290
6.2.4 Transient Effects and Metastabilityp. 292
6.2.4.1 Relaxed Statep. 292
6.2.4.2 Models for Relaxed Statep. 293
6.2.4.3 Red light Effectp. 294
6.2.4.4 Forward Bias Effectp. 295
6.2.4.5 Blue Light Effectp. 295
6.2.4.6 White Light Effectp. 296
6.2.4.7 Reverse Bias Effectp. 296
6.2.4.8 Models for Metastabilityp. 297
6.2.4.9 Implications for Module Testingp. 298
6.2.5 Device Modelp. 299
6.2.6 Stabilityp. 302
7 Appendix A: Frequently Observed Anomaliesp. 305
7.1 JV Curvesp. 305
7.1.1 Roll Over Effectp. 305
7.1.2 Crossoverp. 306
7.1.3 Kink in Light JV Curvep. 306
7.1.4 Violation of Shifting Approximationp. 307
7.2 Solar Cell Parametersp. 308
7.2.1 Reduced J sc but High V ocp. 308
7.2.2 Reduced V oc but High J scp. 308
7.2.3 High J sc but Low FFp. 309
7.3 Diode Parametersp. 309
7.3.1 Diode Parameter A > 2p. 309
7.3.2 Activation Energy E ap. 309
7.3.3 Diode Quality Factor Illumination Dependentp. 310
7.3.4 Diode Quality Factor Temperature-Dependentp. 310
7.4 Quantum Efficiencyp. 311
7.4.1 High J sc but Low EQEp. 311
7.4.2 Low J sc but High EQEp. 311
7.4.3 Low Blue Response in IQEp. 311
7.4.4 Low Red Response in IQEp. 312
7.4.5 Quantum Efficiency Low at All Wavelengthsp. 312
7.4.6 Apparent Quantum Efficiencyp. 313
7.5 Transient Effectsp. 313
7.5.1 V oc Time-Dependent with dV oc /dt > 0p. 313
7.5.2 V oc Time-Dependent with dV oc /dtp. 314
8 Appendix B: Tablesp. 315
Referencesp. 321
Indexp. 361