Skip to:Content
|
Bottom
Cover image for Materials challenges : inorganic photovoltaic solar energy
Title:
Materials challenges : inorganic photovoltaic solar energy
Series:
RSC energy and environment series ; no. 12
Publication Information:
Cambridge : Royal Society of Chemistry, 2015
Physical Description:
xii, 343 pages : illustrations ; 24 cm.
ISBN:
9781849731874
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010345009 TK2960 M38 2015 Open Access Book Book
Searching...

On Order

Summary

Summary

This authoritative reference covers the various aspects of materials science that will impact on the next generation of photovoltaic (PV) module technology. The emphasis on materials brings a fresh perspective to the literature and highlights crucial issues. Special attention is given to thin film PV materials, an area that is growing more rapidly than crystalline silicon and could dominate in the long term. The book addresses the fundamental aspects of PV solar cell materials and gives a comprehensive description of each major thin film material, either in research or production. Particular weight is given to the key materials drivers of solar conversion efficiency, long term stability, materials costs, and materials sustainability.


Author Notes

Stuart Irvine has over thirty years experience in thin film semiconductor deposition and characterisation for opto-electronic devices. Executive Director for the UK research consortium (PV Supergen) and Director of the Centre for Solar Energy Research at OpTIC Technium. Prof Bagnall is based in the new ú120M Southampton Nanofabrication Centre in Electronics and Computer Science. He has spent over 20 years researching a range of semiconductor technologies. His current research focuses on the application of nanotechnology to thin film silicon photovoltaic devices. He is a member of Supergen PV21 and a member of the UK-ISES and PVSAT organising committees.


Table of Contents

Stuart J. C. Irvine and Chiara CandeliseStuart J. C. Irvine and Vincent BarriozHari S. Reehal and Jeremy BallTimothy J. Courts and James M. Burst and Joel N. Duenow and Xiaonan Li and Timothy A. GessertAndrew J. Clayton and Vincent BarriozDavid W. Lane and Kyle J. Hutchings and Robert McCracken and Ian ForbesJames P. Connolly and Denis MencaragliaStuart A. Boden and Tristan L. TempleLefteris Danos and Thomas J. J. Meyer and Pattareeya Kittidachachan and Liping Fang and Thomas S. Parel and Nazila Soleimani and Tomas Markvart
Chapter 1 Introduction and Techno-economic Backgroundp. 1
1.1 Potential for PV Energy Generation as Part of a Renewable Energy Mixp. 1
1.2 Historical Development of Thin Film PVp. 3
1.3 The Role of Inorganic Thin Film PV in the Mix of PV Technologiesp. 6
1.4 Costs of Photovoltaics and Recent PV Industry Developmentsp. 8
1.5 Role of Materials Cost and Efficiency in Cost of Thin Film PVp. 13
1.6 Future Prospects for Cost Reduction and Thin Film PVp. 19
1.7 Outline of Book and Context of Topics in Terms of Techno-economic Backgroundp. 20
Referencesp. 22
Chapter 2 Fundamentals of Thin Film PV Cellsp. 27
2.1 Introductionp. 27
2.1.1 The Sun and Solar Energyp. 28
2.1.2 History of Exploiting Solar Electricityp. 29
2.2 Fundamentals of PV Materialsp. 30
2.2.1 Electrical Properties of Inorganic Materialsp. 30
2.2.2 Doping of Semiconductorsp. 31
2.2.3 Band Structure of Solar Absorbersp. 32
2.3 The pn Junctionp. 37
2.3.1 Fundamentals of Absorption of Solar Radiation in a pn Devicep. 39
2.3.2 Electrical Behaviour of a PV Solar Cellp. 40
2.3.3 Shockley-Queisser Limitp. 42
2.3.4 3-G Solar Cells to Beat the Single Junction Limitp. 44
2.4 Defects in Thin Film PV Materialsp. 46
2.4.1 Staebler-Wronski Effectp. 47
2.4.2 Minority Carrier Lifetime and Junction Defectsp. 47
2.4.3 Lateral Non-uniformity of Thin Film PV Devicesp. 50
2.5 Conclusionsp. 50
Acknowledgementsp. 51
Referencesp. 51
Chapter 3 Crystalline Silicon Thin Film and Nanowire Solar Cellsp. 53
3.1 Introductionp. 53
3.2 Planar Thin Film Crystalline Silicon Technologyp. 54
3.2.1 Crystallisation of Amorphous Siliconp. 54
3.2.2 Seed Layer Approachesp. 57
3.2.3 Lift-Off and Epitaxy Approachesp. 64
3.2.4 Plasmonic Enhancement in Thin Crystalline Silicon Cellsp. 66
3.3 Silicon Nanowire Solar Cellsp. 69
3.3.1 SiNW Growth using the Vapour-Liquid-Solid Methodp. 70
3.3.2 Etched SiNWs and Solar Cellsp. 76
3.4 Conclusionsp. 81
Referencesp. 82
Chapter 4 A Review of NREL Research into Transparent Conducting Oxidesp. 89
4.1 Introductionp. 89
4.2 Practical Challenges Facing TCOsp. 91
4.2.1 Elemental Abundance and Costp. 91
4.2.2 Toxicityp. 91
4.2.3 Ease of Depositionp. 92
4.2.4 Stabilityp. 92
4.2.5 Contactingp. 92
4.3 Background Sciencep. 93
4.3.1 The Transmission Windowp. 93
4.4 Binary Compoundsp. 95
4.4.1 ZnOp. 95
4.4.2 In 2 O 3 -Based TCOsp. 101
4.4.3 SnO 2p. 106
4.4.4 CdOp. 113
4.5 Ternary Compounds and Alloysp. 115
4.5.1 Cadmium Stannatep. 115
4.5.2 Zinc Stannatep. 122
4.5.3 Zn x Mg 1-x Op. 124
4.6 Summaryp. 127
Acknowledgementsp. 128
Referencesp. 129
Chapter 5 Thin Film Cadmium Telluride Solar Cellsp. 135
5.1 Introductionp. 135
5.2 CdS n-type Window Layerp. 137
5.2.1 Doped CdSp. 138
5.2.2 High Resistive Transparent Layerp. 138
5.2.3 Wide Bandgap Cd 1-x Zn x S Alloy Window Layerp. 138
5.3 CdTe p-type Absorber Layerp. 139
5.3.1 Doping CdTep. 140
5.4 CdCl 2 Activation Treatmentp. 141
5.4.1 Recrystallisation of CdTe Grainsp. 142
5.4.2 Inter-diffusion at the CdS-CdTe Interfacep. 142
5.4.3 Passivation of Grain Boundary Defects within CdTep. 143
5.5 Back Contact Formationp. 144
5.5.1 Cu x Tep. 145
5.5.2 ZnTe:Cup. 145
5.5.3 Ni-Pp. 146
5.5.4 Sb 2 Te 3p. 146
5.5.5 CdTe:As'p. 146
5.6 MOCVD CdTe Cellsp. 147
5.6.1 MOCVD Cd 1-x Zn x S vs. CdS Window Layerp. 147
5.6.2 MOCVD CdTe:As Absorber and Contact Layerp. 149
5.7 Prospects for Large-scale Manufacture using MOCVDp. 152
5.8 Conclusionsp. 154
Referencesp. 155
Chapter 6 New Chalcogenide Materials for Thin Film Solar Cellsp. 160
6.1 Introduction and Backgroundp. 160
6.2 Investigating New Materialsp. 168
6.2.1 Conventional versus High Throughput Techniquesp. 168
6.2.2 One- and Two-dimensional Librariesp. 169
6.2.3 Mapping Librariesp. 173
6.2.4 Device Librariesp. 181
6.3 CZTS and Cu 2 ZnSnS 4p. 183
6.3.1 Growth of CZTSp. 184
6.3.2 CZTS Device Structures and Efficienciesp. 185
6.3.3 Composition and Formation of CZTSp. 187
6.4 Sulfosaltsp. 190
6.4.1 Cu-Sb-(S,Se)p. 193
6.4.2 Cu-Bi-Sp. 196
6.4.3 Sn-Sb-Sp. 198
6.5 Conclusionsp. 202
Referencesp. 203
Chapter 7 III-V Solar Cellsp. 209
7.1 Introductionp. 209
7.2 Materials and Growthp. 210
7.2.1 The III-V Semiconductorsp. 210
7.2.2 Growth Methodsp. 213
7.2.3 Heterogeneous Growthp. 214
7.3 Design Conceptsp. 215
7.3.1 Light and Heatp. 216
7.3.2 Charge Neutral Layersp. 217
7.3.3 Space Charge Regionp. 219
7.3.4 Radiative Lossesp. 219
7.3.5 Resulting Analytical Modelp. 221
7.3.6 Single Junction Analysesp. 223
7.3.7 Conclusionsp. 227
7.4 Multi-junction Solutionsp. 227
7.4.1 Theoretical Limitsp. 227
7.4.2 Material Limitationsp. 229
7.4.3 A Tandem Junction Examplep. 232
7.4.4 Record Efficiency Triple Junctionp. 235
7.4.5 Conclusionsp. 239
7.5 Remarks on Nanostructuresp. 240
7.6 Conclusionsp. 242
Referencesp. 243
Chapter 8 Light Capturep. 247
8.1 Introductionp. 247
8.2 The Need for Antireflectionp. 248
8.3 The Need for Light Trappingp. 249
8.4 Mechanismsp. 250
8.4.1 Antireflectionp. 250
8.4.2 Light Trappingp. 251
8.5 Thin Film Antireflection Coatingsp. 253
8.5.1 Optical Considerationsp. 253
8.5.2 Surface Passivationp. 257
8.5.3 Other Thin Film Considerationsp. 257
8.6 Micron-scale Texturingp. 258
8.6.1 Alkali Etching: Pyramids and Groovesp. 258
8.6.2 Acid Etchingp. 260
8.6.3 Dry Etchingp. 262
8.6.4 Ablation Techniquesp. 263
8.7 Submicron Texturingp. 264
8.7.1 Subwavelength Array Theoryp. 265
8.7.2 Subwavelength Texturing Practical Realizationp. 267
8.8 Metal Nanoparticle Techniquesp. 273
8.8.1 Optical Properties of Metal Nanoparticlesp. 273
8.8.2 Fabrication of Metal Nanoparticlesp. 280
8.8.3 Integration of Metal Nanoparticles into Silicon Solar Cellsp. 283
8.9 Summaryp. 284
Referencesp. 285
Chapter 9 Photon Frequency Management Materials for Efficient Solar Energy Collectionp. 297
9.1 Introductionp. 297
9.2 Fundamentalsp. 299
9.2.1 Introductionp. 299
9.2.2 Re-absorptionp. 299
9.2.3 Photon Balance in the Collectorp. 302
9.3 Förster Resonance Energy Transferp. 303
9.3.1 Introductionp. 303
9.3.2 Basic Theoryp. 304
9.3.3 Materials for Improved Photon Energy Collectionp. 306
9.3.4 Estimation of Quantum Yieldp. 306
9.3.5 Examples of Energy Transfer for Efficient Photon Managementp. 308
9.4 Luminescent Solar Collectorsp. 311
9.4.1 Introductionp. 311
9.4.2 Spectroscopic Characterisation of LSCsp. 314
9.4.3 LSC Examplesp. 316
9.5 Luminescence Down-Shifting (LDS)p. 319
9.5.1 Introductionp. 319
9.5.2 LDS Examplesp. 321
9.6 Advanced Photonic Conceptsp. 323
9.7 Conclusionsp. 327
Acknowledgementsp. 327
Referencesp. 328
Subject Indexp. 332
Go to:Top of Page