Cover image for Space physics : an introduction to plasmas and particles in the heliosphere and magnetospheres
Title:
Space physics : an introduction to plasmas and particles in the heliosphere and magnetospheres
Personal Author:
Series:
Advanced texts in physics,

Advanced texts in physics,
Edition:
3rd enl ed.
Publication Information:
New York, NY : Springer, 2004
ISBN:
9783540206170

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010113993 QC718 K34 2004 Open Access Book Book
Searching...

On Order

Summary

Summary

Space is a large natural plasma laboratory offering a wealth of phenomena which range from the simple to the highly complex and non-linear. This book begins with an introduction to basic principles such as single-particle motion, magnetohydrodynamics and plasma waves. It incorporates these concepts into an analysis of complex phenomena including the sun and solar activity, shocks, interplanetary space and magnetospheres, and finally the interaction between these entities in solar-terrestrial relationships. In all these subfields of space research, special attention is paid to energetic particles. The book concludes with a brief chapter on instrumentation. In this third edition, numerous examples have been added to illustrate the basic concepts and aid the reader in applying such concepts to real world physics. In addition, recent observations (ACE, TRACE, Wind) have been included. The chapter on solar-terrestrial relationships has been expanded to introduce the current research topic of Space Weather.


Table of Contents

1 Introductionp. 1
1.1 Neutral Gases and Plasmasp. 1
1.2 Plasmas in Spacep. 2
1.3 A Brief History of Space Researchp. 5
Exercises and Problemsp. 8
2 Charged Particles in Electromagnetic Fieldsp. 9
2.1 Electromagnetic Fieldsp. 9
2.1.1 Maxwell's Equations in Vacuump. 10
2.1.2 Transformation of Field Equationsp. 11
2.1.3 Generalized Ohm's Lawp. 12
2.1.4 Energy Equation of the Electromagnetic Fieldp. 12
2.2 Particle Motion in Electromagnetic Fieldsp. 14
2.2.1 Lorentz Force and Gyrationp. 14
2.3 Drifts of Particles in Electromagnetic Fieldsp. 17
2.3.1 The Concept of the Guiding Centerp. 17
2.3.2 Crossed Magnetic and Electric Fields: Ex B Driftp. 18
2.3.3 Magnetic and Gravitational Fieldsp. 19
2.3.4 Inhomogeneous Magnetic Fieldsp. 20
2.3.5 Curvature Driftp. 20
2.3.6 Drifts Combined with Changes in Particle Energyp. 21
2.3.7 Drift Currents in Plasmasp. 22
2.4 Adiabatic Invariantsp. 22
2.4.1 First Adiabatic Invariant: The Magnetic Momentp. 23
2.4.2 Magnetic Mirrors and Bottlesp. 25
2.4.3 Second Adiabatic Invariant: Longitudinal Invariantp. 27
2.4.4 Third Adiabatic Invariant: Flux Invariantp. 29
2.5 Summaryp. 29
Exercises and Problemsp. 29
3 Magnetohydrodynamicsp. 31
3.1 From Hydrodynamics to Magnetohydrodynamicsp. 32
3.1.1 Partial and Convective Derivativesp. 32
3.1.2 Equation of Motion or Momentum Balancep. 33
3.1.3 Equation of Continuityp. 38
3.1.4 Equation of Statep. 39
3.2 Basic Equations of MHDp. 40
3.2.1 Two-Fluid Descriptionp. 41
3.3 Magnetohydrostaticsp. 42
3.3.1 Magnetic Pressurep. 43
3.3.2 Magnetic Tensionp. 44
3.4 Magnetohydrokinematicsp. 47
3.4.1 Frozen-in Magnetic Fieldsp. 47
3.4.2 Deformation and Dissipation of Fieldsp. 49
3.5 Reconnectionp. 54
3.6 The Magnetohydrodynamic Dynamop. 56
3.7 Debye Shieldingp. 59
3.8 Summaryp. 62
Exercises and Problemsp. 63
4 Plasma Wavesp. 65
4.1 What is a Wave?p. 66
4.2 Magnetohydrodynamic Wavesp. 67
4.2.1 Linearization of the Equations: Perturbation Theory.p. 67
4.2.2 Alfven Wavesp. 69
4.2.3 Magneto-Sonic Wavesp. 70
4.3 Electrostatic Waves in Non-Magnetic Plasmasp. 73
4.3.1 Plasma Oscillationsp. 73
4.3.2 Electron Plasma Waves (Langmuir Waves)p. 75
4.3.3 Ion-Acoustic Waves (Ion Waves)p. 76
4.4 Electrostatic Waves in Magnetized Plasmasp. 77
4.4.1 Electron Oscillations Perpendicular to B (Upper Hybrid Frequency)p. 77
4.4.2 Electrostatic Ion Waves Perpendicular to B (Ion Cyclotron Waves)p. 78
4.4.3 pLower Hybrid Frequencyp. 78
4.5 Electromagnetic Waves in Non-Magnetized Plasmasp. 79
4.6 Electromagnetic Waves in Magnetized Plasmasp. 81
4.6.1 Electromagnetic Waves Perpendicular to BQp. 81
4.6.2 Waves Parallel to the Magnetic Field: Whistler (R-Waves) and L-Wavesp. 83
4.7 Summaryp. 85
Exercises and Problemsp. 85
5 Kinetic Theoryp. 87
5.1 The Distribution Functionp. 87
5.1.1 Phase Space and Distribution Functionp. 87
5.1.2 Maxwell's Velocity Distributionp. 88
5.1.3 Other Distributionsp. 89
5.1.4 Distribution Function and Measured Quantitiesp. 92
5.2 Equations of Kinetic Theoryp. 92
5.2.1 The Boltzmann Equationp. 92
5.2.2 The Vlasov Equationp. 93
5.2.3 The Fokker-Planck Equationp. 95
5.3 Collisionsp. 97
5.3.1 Collisions Between Neutralsp. 97
5.3.2 Collisions Between Charged Particlesp. 99
5.4 Summaryp. 101
Exercises and Problemsp. 101
6 Sun and Solar Wind: Plasmas in the Heliospherep. 103
6.1 The Sunp. 103
6.1.1 Nuclear Fusionp. 105
6.1.2 Structure of the Sunp. 106
6.1.3 The Solar Atmospherep. 107
6.1.4 The Coronal Magnetic Fieldp. 108
6.2 The Solar Windp. 109
6.2.1 Propertiesp. 110
6.2.2 Solar Wind Modelsp. Ill
6.2.3 Coronal Heating and Solar Wind Accelerationp. 115
6.3 The Interplanetary Magnetic Field (IMF)p. 116
6.3.1 Spiral Structurep. 116
6.3.2 Sector Structurep. 118
6.3.3 The Ballerina Modelp. 118
6.3.4 Corotating Interaction Regionsp. 120
6.4 Plasma Waves in Interplanetary Spacep. 121
6.4.1 Power-Density Spectrump. 122
6.4.2 Waves or Turbulence?p. 123
6.5 The Three-Dimensional Heliospherep. 125
6.6 The Active Sunp. 127
6.6.1 The Solar Cyclep. 127
6.6.2 A Simple Model of the Solar Cyclep. 128
6.6.3 The Heliosphere During the Solar Cyclep. 130
6.7 Flares and Coronal Mass Ejectionsp. 131
6.7.1 Electromagnetic Radiationp. 131
6.7.2 Classes of Flaresp. 135
6.7.3 Coronal Mass Ejectionsp. 136
6.7.4 Coronal Mass Ejections, Flares, and Coronal Shocksp. 138
6.7.5 Models of Coronal Mass Ejections (CMEs)p. 139
6.7.6 Models of Flaresp. 141
6.7.7 Magnetic Clouds: CMEs in Interplanetary Spacep. 143
6.7.8 Interplanetary Shocksp. 144
6.8 Shockp. Waves
6.8.1 Information, Dissipation, and Non-Linearityp. 147
6.8.2 The Shock's Rest Framep. 148
6.8.3 Collisionless Shock Wavesp. 149
6.8.4 Shock Conservation Lawsp. 150
6.8.5 Jump Conditions and Discontinuitiesp. 152
6.8.6 Shock Geometryp. 153
6.8.7 Fast and Slow Shocksp. 154
6.8.8 The Coplanarity Theoremp. 156
6.8.9 The Shock Normal Directionp. 156
6.9 Summaryp. 157
Exercises and Problemsp. 157
7 Energetic Particles in the Heliospherep. 159
7.1 Particle Populations in the Heliospherep. 159
7.2 Solar Energetic Particles and Classes of Flaresp. 162
7.3 Interplanetary Transport - Theoretical Backgroundp. 166
7.3.1 Spatial Diffusionp. 166
7.3.2 Pitch Angle Diffusionp. 173
7.3.3 Diffusion in Momentum Spacep. 175
7.3.4 Wave-Particle Interactionsp. 175
7.3.5 Electromagnetic Wavesp. 178
7.3.6 Transport Equationsp. 179
7.4 Interplanetary Propagation - Observationsp. 182
7.4.1 Fits with a Transport Equationp. 182
7.4.2 Analysis of Magnetic Field Fluctuationsp. 183
7.4.3 Comparison Between Both Approachesp. 184
7.5 Particle Acceleration at Shocks - Theoryp. 186
7.5.1 Shock Drift Acceleration (SDA)p. 186
7.5.2 Diffusive Shock Accelerationp. 189
7.5.3 Diffusive Shock Acceleration and Self-Generated Turbulencep. 192
7.5.4 Stochastic Accelerationp. 194
7.5.5 The Shock as a Non-Linear Systemp. 195
7.5.6 Summary Shock Accelerationp. 196
7.6 Particles at Shocks in Interplanetary Spacep. 197
7.6.1 Low-Energy Particles (Tens of keV) at Traveling Shocksp. 198
7.6.2 High-Energetic Particles (MeVs) at Traveling Shocksp. 201
7.6.3 Particles at Planetary Bow Shocksp. 203
7.7 Galactic Cosmic Rays (GCRs)p. 205
7.7.1 Variationsp. 205
7.7.2 Modulation Modelsp. 211
7.8 Summaryp. 215
Exercises and Problemsp. 215
8 The Terrestrial Magnetospherep. 217
8.1 The Geomagnetic Fieldp. 218
8.1.1 Description of the Geomagnetic Fieldp. 218
8.1.2 Variability of the Internal Fieldp. 221
8.1.3 The Terrestrial Dynamop. 224
8.2 Topology of the Magnetospherep. 226
8.2.1 Overviewp. 226
8.2.2 The Magnetopausep. 227
8.2.3 Polar Cuspsp. 230
8.2.4 The Tail and the Polar Capsp. 230
8.2.5 Magnetosheath and Bow Shockp. 232
8.3 Plasmas and Currents in the Magnetospherep. 234
8.3.1 The Atmospherep. 234
8.3.2 The Ionospherep. 236
8.3.3 Magnetosphere-Ionosphere Couplingp. 240
8.3.4 The Plasmaspherep. 243
8.3.5 The Geospherep. 245
8.3.6 The Outer Magnetospherep. 246
8.4 The Open Magnetospherep. 246
8.4.1 Convection of Plasma Into the Magnetospherep. 247
8.4.2 Flux Transfer Eventsp. 250
8.4.3 Release of Accumulated Matter: Substormsp. 251
8.5 Geomagnetic Disturbancesp. 253
8.5.1 Daily Variationsp. 253
8.5.2 Geomagnetic Indicesp. 253
8.5.3 Geomagnetic Pulsationsp. 254
8.5.4 Geomagnetic Stormsp. 255
8.5.5 Geomagnetic Activity on Longer Time Scalesp. 256
8.6 Auroraep. 259
8.6.1 Historical Excursionp. 260
8.6.2 Beginning of the Scientific Analysisp. 262
8.6.3 Modern Interpretationp. 265
8.6.4 Electron Accelerationp. 265
8.6.5 Excitation of the Atmospherep. 267
8.6.6 Shape and Local Timep. 268
8.7 Energetic Particles in the Magnetospherep. 269
8.7.1 The Radiation Beltsp. 269
8.7.2 Galactic Cosmic Rays - St0rmer Orbitsp. 279
8.7.3 Solar Energetic Particles - Polar Cap Absorptionp. 281
8.8 Magnetospheric Modelingp. 282
8.9 Summaryp. 283
Exercises and Problemsp. 284
9 Planetary Magnetospheresp. 285
9.1 The Planetsp. 285
9.2 Planets with a Magnetic Fieldp. 286
9.2.1 Mercuryp. 287
9.2.2 Jupiterp. 288
9.2.3 Saturnp. 290
9.2.4 Uranusp. 291
9.2.5 Neptunep. 293
9.3 Planets Without a Magnetic Fieldp. 294
9.4 Comparison of Planetary Magnetospheresp. 295
9.4.1 Structures of Planetary Magnetospheresp. 295
9.4.2 Sizesp. 296
9.4.3 Plasma Sourcesp. 297
9.4.4 Upstream of the Bow Shock: The Foreshocksp. 298
9.4.5 Radiation Belts

p. 299

9.5 Summaryp. 301
Exercises and Problemsp. 302
10 Solar-Terrestrial Relationshipsp. 303
10.1 Solar-Terrestrial Relationships: Overviewp. 303
10.2 Responses of the Upper Atmosphere to Solar Variabilityp. 305
10.2.1 Polar Cap Absorptions and Ozonep. 307
10.2.2 Thermospheric Circulationp. 309
10.3 The Solar Cycle, Sector Boundaries, Droughts, and Thunderstormsp. 311
10.3.1 Solar Activity, Climate, and Culturep. 312
10.3.2 Sun and Weatherp. 314
10.3.3 Cosmic Rays, Clouds, and Solar Cycle Lengthp. 318
10.4 The Technical Environment and Solar Activityp. 318
11 Instrumentationp. 321
11.1 Field Instrumentsp. 321
11.1.1 The Magnetic Fieldp. 322
11.1.2 Electric Field Measurementsp. 324
11.1.3 Wave Measurementsp. 325
11.2 Plasma Instrumentsp. 326
11.2.1 Instruments for Dense Plasmasp. 326
11.2.2 Instruments for Rarefied Plasmasp. 328
11.2.3 Energetic Particle Instrumentsp. 329
11.3 Supplementary Ground-Based Observationsp. 331
Appendixp. 333
A.1 List of Symbolsp. 333
A.2 Useful Equations in the SI and cgs Systemp. 335
A.3 Useful Relationsp. 337
A.3.1 Vector Calculusp. 337
A.3.2 Cylindrical Coordinatesp. 338
A.3.3 Spherical Coordinatesp. 338
A.4 Useful Numbersp. 339
A.4.1 Fundamental Constantsp. 339
A.4.2 Numbers in Plasmasp. 339
Referencesp. 341
Indexp. 357