Cover image for Poisson structures and their normal forms
Title:
Poisson structures and their normal forms
Personal Author:
Publication Information:
Basel, Switzerland : Birkh�auser, 2005
Physical Description:
xv, 321 p. : ill. ; 24 cm.
ISBN:
9783764373344

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010205973 QA614.3 D84 2005 Open Access Book Book
Searching...

On Order

Summary

Summary

Poisson manifolds play a fundamental role in Hamiltonian dynamics, where they serve as phase spaces. They also arise naturally in other mathematical problems, and form a bridge from the "commutative world" to the "noncommutative world". The aim of this book is twofold: On the one hand, it gives a quick, self-contained introduction to Poisson geometry and related subjects, including singular foliations, Lie groupoids and Lie algebroids. On the other hand, it presents a comprehensive treatment of the normal form problem in Poisson geometry. Even when it comes to classical results, the book gives new insights. It contains results obtained over the past 10 years which are not available in other books.


Table of Contents

Prefacep. xi
1 Generalities on Poisson Structures
1.1 Poisson bracketsp. 1
1.2 Poisson tensorsp. 5
1.3 Poisson morphismsp. 9
1.4 Local canonical coordinatesp. 13
1.5 Singular symplectic foliationsp. 16
1.6 Transverse Poisson structuresp. 21
1.7 Group actions and reductionp. 23
1.8 The Schouten bracketp. 27
1.8.1 Schouten bracket of multi-vector fieldsp. 27
1.8.2 Schouten bracket on Lie algebrasp. 31
1.8.3 Compatible Poisson structuresp. 33
1.9 Symplectic realizationsp. 34
2 Poisson Cohomology
2.1 Poisson cohomologyp. 39
2.1.1 Definition of Poisson cohomologyp. 39
2.1.2 Interpretation of Poisson cohomologyp. 40
2.1.3 Poisson cohomology versus de Rham cohomologyp. 41
2.1.4 Other versions of Poisson cohomologyp. 42
2.1.5 Computation of Poisson cohomologyp. 43
2.2 Normal forms of Poisson structuresp. 44
2.3 Cohomology of Lie algebrasp. 49
2.3.1 Chevalley-Eilenberg complexesp. 49
2.3.2 Cohomology of linear Poisson structuresp. 51
2.3.3 Rigid Lie algebrasp. 53
2.4 Spectral sequencesp. 54
2.4.1 Spectral sequence of a filtered complexp. 54
2.4.2 Leray spectral sequencep. 56
2.4.3 Hochschild-Serre spectral sequencep. 57
2.4.4 Spectral sequence for Poisson cohomologyp. 59
2.5 Poisson cohomology in dimension 2p. 60
2.5.1 Simple singularitiesp. 61
2.5.2 Cohomology of Poisson germsp. 63
2.5.3 Some examples and remarksp. 68
2.6 The curl operatorp. 69
2.6.1 Definition of the curl operatorp. 69
2.6.2 Schouten bracket via curl operatorp. 71
2.6.3 The modular classp. 72
2.6.4 The curl operator of an affine connectionp. 73
2.7 Poisson homologyp. 74
3 Levi Decomposition
3.1 Formal Levi decompositionp. 78
3.2 Levi decomposition of Poisson structuresp. 81
3.3 Construction of Levi decompositionp. 84
3.4 Normed vanishing of cohomologyp. 88
3.5 Proof of analytic Levi decomposition theoremp. 92
3.6 The smooth casep. 98
4 Linearization of Poisson Structures
4.1 Nondegenerate Lie algebrasp. 105
4.2 Linearization of low-dimensional Poisson structuresp. 107
4.2.1 Two-dimensional casep. 107
4.2.2 Three-dimensional casep. 108
4.2.3 Four-dimensional casep. 110
4.3 Poisson geometry of real semisimple Lie algebrasp. 112
4.4 Nondegeneracy of aff(n)p. 117
4.5 Some other linearization resultsp. 122
4.5.1 Equivariant linearizationp. 122
4.5.2 Linearization of Poisson-Lie tensorsp. 122
4.5.3 Poisson structures with a hyperbolic \op {{R}}^k -actionp. 124
4.5.4 Transverse Poisson structures to coadjoint orbitsp. 125
4.5.5 Finite determinacy of Poisson structuresp. 126
5 Multiplicative and Quadratic Poisson Structures
5.1 Multiplicative tensorsp. 129
5.2 Poisson-Lie groups and r-matricesp. 132
5.3 The dual and the double of a Poisson-Lie groupp. 136
5.4 Actions of Poisson-Lie groupsp. 139
5.4.1 Poisson actions of Poisson-Lie groupsp. 139
5.4.2 Dressing transformationsp. 142
5.4.3 Momentum mapsp. 144
5.5 r-matrices and quadratic Poisson structuresp. 145
5.6 Linear curl vector fieldsp. 147
5.7 Quadratization of Poisson structuresp. 150
5.8 Nonhomogeneous quadratic Poisson structuresp. 156
6 Nambu Structures and Singular Foliations
6.1 Nambu brackets and Nambu tensorsp. 159
6.2 Integrable differential formsp. 165
6.3 Frobenius with singularitiesp. 168
6.4 Linear Nambu structuresp. 171
6.5 Kupka's phenomenonp. 178
6.6 Linearization of Nambu structuresp. 182
6.6.1 Decomposability of ¿p. 184
6.6.2 Formal linearization of the associated foliationp. 185
6.6.3 The analytic casep. 188
6.6.4 Formal linearization of ¿p. 188
6.6.5 The smooth elliptic casep. 190
6.7 Integrable 1-forms with a non-zero linear partp. 192
6.8 Quadratic integrable 1-formsp. 197
6.9 Poisson structures in dimension 3p. 199
7 Lie Groupoids
7.1 Some basic notions on groupoidsp. 203
7.1.1 Definitions and first examplesp. 203
7.1.2 Lie groupoidsp. 206
7.1.3 Germs and slices of Lie groupoidsp. 208
7.1.4 Actions of groupoidsp. 208
7.1.5 Haar systemsp. 209
7.2 Morita equivalencep. 210
7.3 Proper Lie groupoidsp. 213
7.3.1 Definition and elementary propertiesp. 213
7.3.2 Source-local trivialityp. 215
7.3.3 Orbifold groupoidsp. 216
7.4 Linearization of Lie groupoidsp. 217
7.4.1 Linearization of Lie group actionsp. 217
7.4.2 Local linearization of Lie groupoidsp. 218
7.4.3 Slice theorem for Lie groupoidsp. 222
7.5 Symplectic groupoidsp. 223
7.5.1 Definition and basic propertiesp. 223
7.5.2 Proper symplectic groupoidsp. 227
7.5.3 Hamiltonian actions of symplectic groupoidsp. 232
7.5.4 Some generalizationsp. 233
8 Lie Algebroids
8.1 Some basic definitions and propertiesp. 235
8.1.1 Definition and some examplesp. 235
8.1.2 The Lie algebroid of a Lie groupoidp. 237
8.1.3 Isotropy algebrasp. 238
8.1.4 Characteristic foliation of a Lie algebroidp. 239
8.1.5 Lie pseudoalgebrasp. 239
8.2 Fiber-wise linear Poisson structuresp. 240
8.3 Lie algebroid morphismsp. 242
8.4 Lie algebroid actions and connectionsp. 243
8.5 Splitting theorem and transverse structuresp. 246
8.6 Cohomology of Lie algebroidsp. 249
8.7 Linearization of Lie algebroidsp. 252
8.8 Integrability of Lie bracketsp. 257
8.8.1 Reconstruction of groupoids from their algebroidsp. 257
8.8.2 Integrability criteriap. 259
8.8.3 Integrability of Poisson manifoldsp. 262
Appendix
A.1 Moser's path methodp. 263
A.2 Division theoremsp. 269
A.3 Reeb stabilityp. 271
A.4 Action-angle variablesp. 273
A.5 Normal forms of vector fieldsp. 276
A.5.1 Poincaré-Dulac normal formsp. 276
A.5.2 Birkhoff normal formsp. 278
A.5.3 Toric characterization of normal formsp. 280
A.5.4 Smooth normal formsp. 282
A.6 Normal forms along a singular curvep. 283
A.7 The neighborhood of a symplectic leafp. 286
A.7.1 Geometric data and coupling tensorsp. 286
A.7.2 Linear modelsp. 290
A.8 Dirac structuresp. 292
A.9 Deformation quantizationp. 294
Bibliographyp. 299
Indexp. 317