Cover image for Fundamentals of powder diffraction and structural characterization of materials
Title:
Fundamentals of powder diffraction and structural characterization of materials
Personal Author:
Publication Information:
Boston, Mass. : Kluwer Academic Pubs, 2003
Physical Description:
1 CD-ROM ; 12 cm
ISBN:
9781402073656
General Note:
Accompanies text of the same title : QC482.D5 P42 2003
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010037566 CP 2768 Computer File Accompanies Open Access Book Compact Disc Accompanies Open Access Book
Searching...

On Order

Summary

Summary

Requires no prior knowledge of the subject, but is comprehensive and detailed making it useful for both the novice and experienced user of the powder diffraction method.

Useful for any scientific or engineering background, where precise structural information is required.

Comprehensively describes the state-of-the-art in structure determination from powder diffraction data both theoretically and practically using multiple examples of varying complexity.

Pays particular attention to the utilization of Internet resources, especially the well-tested and freely available computer codes designed for processing of powder diffraction data.


Author Notes

Vitalij K. Pecharsky: Department of Materials Science and Engineering, Ames Laboratory of the U.S. Department of Energy Iowa State University, Ames
Peter Y. Zavalij: Department of Chemistry and Institute for Materials Research State University of New York at Binghamton, NY


Table of Contents

Prefacep. xvii
1. Fundamentals of Crystalline Statep. 1
1.1 Introductionp. 1
1.2 Crystalline statep. 2
1.3 Crystal lattice and crystal structurep. 4
1.3.1 Shape of the unit cellp. 6
1.3.2 Content of the unit cellp. 7
1.3.3 Asymmetric part of the unit cellp. 8
1.4 Symmetry operations and symmetry elementsp. 10
1.5 Finite symmetry elementsp. 12
1.5.1 One-fold rotation axis and center of inversionp. 16
1.5.2 Two-fold rotation axis and mirror planep. 16
1.5.3 Three-fold rotation axis and three-fold inversion axisp. 17
1.5.4 Four-fold rotation axis and four-fold inversion axisp. 18
1.5.5 Six-fold rotation axis and six-fold inversion axisp. 18
1.6 Interaction of symmetry elementsp. 19
1.6.1 Symmetry groupsp. 21
1.6.2 Generalization of interactions between finite symmetry elementsp. 22
1.7 Fundamentals of group theoryp. 24
1.8 Crystal systemsp. 26
1.9 Stereographic projectionsp. 27
1.10 Crystallographic point groupsp. 29
1.11 Laue classesp. 31
1.12 Selection of a unit cell and Bravais latticesp. 32
1.13 Infinite symmetry elementsp. 39
1.13.1 Glide planesp. 40
1.13.2 Screw axesp. 42
1.13.3 Interaction of infinite symmetry elementsp. 43
1.14 Crystallographic planes, directions and indicesp. 45
1.14.1 Indices of planesp. 46
1.14.2 Lattice directions and indicesp. 49
1.15 Reciprocal latticep. 50
1.16 Crystallographic space groupsp. 53
1.16.1 Relationships between space and point groupsp. 53
1.16.2 Full international symbols of crystallographic space groupsp. 56
1.16.3 Visualization of space group symmetry in three dimensionsp. 58
1.16.4 Space groups in naturep. 59
1.17 International Tables for Crystallographyp. 60
1.18 Equivalent positionsp. 65
1.18.1 General and special equivalent positionsp. 66
1.18.2 Special sites with points located on mirror planesp. 66
1.18.3 Special sites with points located on rotation or inversion axesp. 67
1.18.4 Special sites with points located on centers of inversionp. 68
1.19 Symbolic description of symmetry operationsp. 69
1.19.1 Finite symmetry operationsp. 70
1.19.2 Infinite symmetry operationsp. 71
1.20 Algebraic treatment of symmetry operationsp. 72
1.20.1 Transformations of coordinates of a pointp. 72
1.20.2 Rotational transformations of vectorsp. 77
1.20.3 Translational transformations of vectorsp. 78
1.20.4 Combined symmetrical transformations of vectorsp. 79
1.20.5 Augmented matricesp. 81
1.20.6 Algebraic representation of crystallographic symmetryp. 82
1.20.7 Interactions between symmetry operationsp. 86
1.21 Non-conventional symmetryp. 88
1.21.1 Commensurate modulationp. 88
1.21.2 Incommensurate modulationp. 90
1.21.3 Quasicrystalsp. 91
1.22 Additional readingp. 94
1.23 Problemsp. 95
2. Fundamentals of Diffractionp. 99
2.1 Introductionp. 99
2.2 Properties and sources of radiationp. 102
2.2.1 Nature and properties of x-raysp. 102
2.2.2 Production of x-raysp. 104
2.2.3 Conventional sealed x-ray sourcesp. 105
2.2.4 Continuous and characteristic x-ray spectrap. 107
2.2.5 Rotating anode x-ray sourcesp. 110
2.2.6 Synchrotron radiation sourcesp. 112
2.2.7 Other types of radiationp. 113
2.3 Collimation and monochromatizationp. 115
2.3.1 Angular divergence and collimationp. 116
2.3.2 Monochromatizationp. 119
2.4 Detection of x-raysp. 128
2.4.1 Detector efficiency, linearity, proportionality and resolutionp. 128
2.4.2 Classification of detectorsp. 130
2.4.3 Point detectorsp. 132
2.4.4 Line and area detectorsp. 136
2.5 Scattering by electrons, atoms and latticesp. 138
2.5.1 Scattering by electronsp. 140
2.5.2 Scattering by atoms and scattering factorp. 143
2.5.3 Scattering by latticesp. 145
2.6 Geometry of diffraction by latticesp. 146
2.6.1 Laue equations and Braggs' lawp. 147
2.6.2 Reciprocal lattice and Ewald's spherep. 149
2.7 Origin of the powder diffraction patternp. 153
2.7.1 Representation of powder diffraction patternsp. 158
2.7.2 Understanding of powder diffraction patternsp. 161
2.8 Positions of powder diffraction peaksp. 164
2.8.1 Peak positions as a function of unit cell dimensionsp. 164
2.8.2 Other factors affecting peak positionsp. 167
2.9 Shapes of powder diffraction peaksp. 171
2.9.1 Peak shape functionsp. 173
2.9.2 Peak asymmetryp. 182
2.10 Intensity of powder diffraction peaksp. 184
2.10.1 Integrated intensityp. 185
2.10.2 Scale factorp. 188
2.10.3 Multiplicity factorp. 189
2.10.4 Lorentz-polarization factorp. 190
2.10.5 Absorption factorp. 193
2.10.6 Preferred orientationp. 196
2.10.7 Extinction factorp. 202
2.11 Structure factorp. 203
2.11.1 Structure amplitudep. 203
2.11.2 Population factorp. 204
2.11.3 Temperature factorp. 207
2.11.4 Atomic scattering factorp. 212
2.11.5 Phase anglep. 216
2.12 Effects of symmetry on the structure amplitudep. 218
2.12.1 Friedel pairs and Friedel's lawp. 219
2.12.2 Friedel's law and multiplicity factorp. 221
2.12.3 Systematic absencesp. 222
2.12.4 Space groups and systematic absencesp. 227
2.13 Fourier transformationp. 237
2.14 Phase problemp. 243
2.14.1 Patterson techniquep. 245
2.14.2 Direct methodsp. 249
2.14.3 Structure solution from powder diffraction datap. 253
2.15 Additional readingp. 256
2.16 Problemsp. 258
3. Experimental Techniquesp. 261
3.1 Introductionp. 261
3.2 Brief history of the powder diffraction methodp. 262
3.3 Powder diffractometersp. 267
3.3.1 Principles of goniometer design in powder diffractometryp. 269
3.3.2 Goniostats with point detectorsp. 273
3.3.3 Goniostats with area detectorsp. 276
3.4 Safetyp. 279
3.4.1 Radiation quantities and termsp. 280
3.4.2 Biological effects of ionizing radiationp. 281
3.4.3 Exposure limitsp. 282
3.4.4 Radiation hazards of analytical x-ray systemsp. 283
3.4.5 Hazard control measures for analytical x-ray systemsp. 284
3.5 Sample preparationp. 287
3.5.1 Powder requirements and powder preparationp. 287
3.5.2 Powder mountingp. 290
3.5.3 Sample sizep. 295
3.5.4 Sample thickness and uniformityp. 297
3.5.5 Positioning the sample with respect to the goniometer axisp. 298
3.5.6 Effects of sample preparation on powder diffraction datap. 301
3.6 Data acquisitionp. 305
3.6.1 Wavelength selectionp. 305
3.6.2 Monochromatizationp. 306
3.6.3 Incident beam aperturep. 309
3.6.4 Diffracted beam aperturep. 313
3.6.5 Variable aperturep. 316
3.6.6 Power settingsp. 317
3.6.7 Classification of powder diffraction experimentsp. 318
3.6.8 Step scanp. 319
3.6.9 Continuous scanp. 322
3.6.10 Scan rangep. 324
3.7 Quality of experimental datap. 326
3.7.1 Quality of intensity measurementsp. 328
3.7.2 Factors affecting resolutionp. 331
3.8 Additional readingp. 333
3.9 Problemsp. 335
4. Preliminary Data Processing and Phase Analysisp. 339
4.1 Introductionp. 339
4.2 Interpretation of powder diffraction datap. 340
4.3 Preliminary data processingp. 345
4.3.1 Backgroundp. 347
4.3.2 Smoothingp. 352
4.3.3 K[alpha subscript 2] strippingp. 354
4.3.4 Peak searchp. 356
4.3.5 Profile fittingp. 360
4.4 Phase identification and analysisp. 371
4.4.1 Crystallographic databasesp. 372
4.4.2 Phase identification and qualitative analysisp. 377
4.4.3 Quantitative analysisp. 384
4.5 Additional readingp. 390
4.6 Problemsp. 392
5. Unit Cell Determination and Refinementp. 399
5.1 Introductionp. 399
5.2 The indexing problemp. 399
5.3 Known versus unknown unit cell dimensionsp. 402
5.4 Indexing: known unit cellp. 405
5.4.1 High symmetry indexing examplep. 407
5.4.2 Other crystal systemsp. 413
5.5 Reliability of indexingp. 415
5.5.1 The F[subscript N] figure of meritp. 418
5.5.2 The M[subscript 20] figure of meritp. 419
5.6 Introduction to ab initio indexingp. 420
5.7 Cubic crystal systemp. 422
5.7.1 Primitive cubic unit cell: LaB[subscript 6]p. 425
5.7.2 Body-centered cubic unit cell: U[subscript 3]Ni[subscript 6]Si[subscript 2]p. 427
5.8 Tetragonal and hexagonal crystal systemsp. 429
5.8.1 Indexing example: LaNi[subscript 4.85]Sn[subscript 0.15]p. 433
5.9 Automatic ab initio indexing algorithmsp. 436
5.9.1 Trial-and-error methodp. 438
5.9.2 Zone search methodp. 439
5.10 Unit cell reduction algorithmsp. 440
5.10.1 Delaunay-Ito reductionp. 441
5.10.2 Niggli reductionp. 442
5.11 Automatic ab initio indexing: computer codesp. 443
5.11.1 TREORp. 444
5.11.2 DICVOLp. 447
5.11.3 ITOp. 448
5.11.4 Selecting a solutionp. 449
5.12 Ab initio indexing examplesp. 451
5.12.1 Hexagonal indexing: LaNi[subscript 4.85]Sn[subscript 0.15]p. 451
5.12.2 Monoclinic indexing: (CH[subscript 3]NH[subscript 3])[subscript 2]Mo[subscript 7]O[subscript 22]p. 457
5.12.3 Triclinic indexing: Fe[subscript 7](PO[subscript 4])[subscript 6]p. 460
5.13 Precise lattice parameters and linear least squaresp. 464
5.13.1 Linear least squaresp. 466
5.13.2 Precise lattice parameters from linear least squaresp. 469
5.14 Epiloguep. 479
5.15 Additional readingp. 481
5.16 Problemsp. 482
6. Crystal Structure Determinationp. 493
6.1 Introductionp. 493
6.2 Ab initio methods of structure solutionp. 494
6.2.1 Conventional reciprocal space techniquesp. 495
6.2.2 Conventional direct space techniquesp. 495
6.2.3 Unconventional reciprocal and direct space strategiesp. 496
6.2.4 Validation and completion of the modelp. 499
6.3 The content of the unit cellp. 500
6.4 Pearson's classificationp. 503
6.5 Structure factors from powder diffraction datap. 504
6.6 Non-linear least squaresp. 507
6.7 Figures of merit in full pattern decompositionp. 512
6.8 Structure solution from powder datap. 515
6.9 Crystal structure of LaNi[subscript 4.85]Sn[subscript 0.15]p. 516
6.10 Crystal structure of CeRhGe[subscript 3] from x-ray datap. 530
6.11 Crystal structure of CeRhGe[subscript 3] from neutron datap. 541
6.12 Crystal structure of Nd[subscript 5]Si[subscript 4]p. 548
6.13 Crystal structure of NiMnO[subscript 2](OH)p. 553
6.14 Crystal structure of tmaV[subscript 3]O[subscript 7]p. 561
6.15 Crystal structure of ma[subscript 2]Mo[subscript 7]O[subscript 22]p. 568
6.16 Crystal structure of Mn[subscript 7](OH)[subscript 3](VO[subscript 4])[subscript 4]p. 571
6.17 Crystal structure of FePO[subscript 4]p. 575
6.18 Empirical methods of solving crystal structuresp. 580
6.18.1 Crystal structure of Gd[subscript 5]Ge[subscript 4]p. 583
6.18.2 Crystal structure of Gd[subscript 5]Si[subscript 4]p. 585
6.18.3 Crystal structure of Gd[subscript 5]Si[subscript 2]Ge[subscript 2]p. 587
6.19 Additional readingp. 591
6.20 Problemsp. 594
7. Crystal Structure Refinementp. 599
7.1 Introductionp. 599
7.2 The Rietveld methodp. 601
7.2.1 Rietveld method basicsp. 603
7.2.2 Classes of Rietveld parametersp. 606
7.2.3 Figures of merit and quality of refinementp. 608
7.2.4 Termination of Rietveld refinementp. 609
7.3 Rietveld refinement of LaNi[subscript 4.85]Sn[subscript 0.15]p. 610
7.3.1 Scale factor and profile parametersp. 611
7.3.2 Overall atomic displacement parameterp. 614
7.3.3 Individual parameters, free and constrained variablesp. 614
7.3.4 Anisotropic atomic displacement parametersp. 617
7.3.5 Multiple phase refinementp. 617
7.3.6 Refinement resultsp. 618
7.3.7 Different radiationp. 619
7.3.8 Combined refinement using different diffraction datap. 623
7.4 Rietveld refinement of CeRhGe[subscript 3]p. 628
7.4.1 Refinement using x-ray diffraction datap. 628
7.4.2 Refinement using neutron diffraction datap. 632
7.5 Rietveld refinement of Nd[subscript 5]Si[subscript 4]p. 635
7.6 Rietveld refinement using GSASp. 639
7.7 Completion of the model and Rietveld refinement of NiMnO[subscript 2](OH)p. 643
7.8 Completion of the model and Rietveld refinement of tmaV[subscript 3]O[subscript 7]p. 654
7.9 Rietveld refinement and completion of the ma[subscript 2]Mo[subscript 7]O[subscript 22] structurep. 662
7.10 Rietveld refinement of Mn[subscript 7](OH)[subscript 3](VO[subscript 4])[subscript 4]p. 669
7.11 Rietveld refinement of the monoclinic FePO[subscript 4]p. 677
7.12 Rietveld refinement of Gd[subscript 5]Ge[subscript 4], Gd[subscript 5]Si[subscript 4] and Gd[subscript 5]Si[subscript 2]Ge[subscript 2]p. 684
7.12.1 Gd[subscript 5]Ge[subscript 4]p. 685
7.12.2 Gd[subscript 5]Si[subscript 4]p. 687
7.12.3 Gd[subscript 5]Si[subscript 2]Ge[subscript 2]p. 692
7.13 Epiloguep. 697
7.14 Additional readingp. 699
7.15 Problemsp. 700
Indexp. 703