Cover image for Probabilistic robotics
Title:
Probabilistic robotics
Personal Author:
Series:
Intelligent robotics and autonomous agents
Publication Information:
Cambridge, MA : MIT Press, 2005
ISBN:
9780262201629
Subject Term:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010124280 TJ211 T47 2005 Open Access Book Book
Searching...

On Order

Summary

Summary

An introduction to the techniques and algorithms of the newest field in robotics.

Probabilistic robotics is a new and growing area in robotics, concerned with perception and control in the face of uncertainty. Building on the field of mathematical statistics, probabilistic robotics endows robots with a new level of robustness in real-world situations. This book introduces the reader to a wealth of techniques and algorithms in the field. All algorithms are based on a single overarching mathematical foundation. Each chapter provides example implementations in pseudo code, detailed mathematical derivations, discussions from a practitioner's perspective, and extensive lists of exercises and class projects. The book's Web site, www.probabilistic-robotics.org, has additional material. The book is relevant for anyone involved in robotic software development and scientific research. It will also be of interest to applied statisticians and engineers dealing with real-world sensor data.


Author Notes

Sebastian Thrun is Associate Professor in the Computer Science Department at Stanford University and Director of the Stanford Al Lab
Wolfram Burgard is Associate Professor and Head of the Autonomous Intelligent Systems Research Lab in the Department of Computer Science at the University of Freiburg
Dieter Fox is Associate Professor and Director of the Robotics and State Estimation Lab in the Department of Computer Science and Engineering at the University of Washington


Table of Contents

Prefacep. xvii
Acknowledgmentsp. xix
I Basicsp. 1
1 Introductionp. 3
1.1 Uncertainty in Roboticsp. 3
1.2 Probabilistic Roboticsp. 4
1.3 Implicationsp. 9
1.4 Road Mapp. 10
1.5 Teaching Probabilistic Roboticsp. 11
1.6 Bibliographical Remarksp. 11
2 Recursive State Estimationp. 13
2.1 Introductionp. 13
2.2 Basic Concepts in Probabilityp. 14
2.3 Robot Environment Interactionp. 19
2.4 Bayes Filtersp. 26
2.5 Representation and Computationp. 34
2.6 Summaryp. 35
2.7 Bibliographical Remarksp. 36
2.8 Exercisesp. 36
3 Gaussian Filtersp. 39
3.1 Introductionp. 39
3.2 The Kalman Filterp. 40
3.3 The Extended Kalman Filterp. 54
3.4 The Unscented Kalman Filterp. 65
3.5 The Information Filterp. 71
3.6 Summaryp. 79
3.7 Bibliographical Remarksp. 81
3.8 Exercisesp. 81
4 Nonparametric Filtersp. 85
4.1 The Histogram Filterp. 86
4.2 Binary Bayes Filters with Static Statep. 94
4.3 The Particle Filterp. 96
4.4 Summaryp. 113
4.5 Bibliographical Remarksp. 114
4.6 Exercisesp. 115
5 Robot Motionp. 117
5.1 Introductionp. 117
5.2 Preliminariesp. 118
5.3 Velocity Motion Modelp. 121
5.4 Odometry Motion Modelp. 132
5.5 Motion and Mapsp. 140
5.6 Summaryp. 143
5.7 Bibliographical Remarksp. 145
5.8 Exercisesp. 145
6 Robot Perceptionp. 149
6.1 Introductionp. 149
6.2 Mapsp. 152
6.3 Beam Models of Range Findersp. 153
6.4 Likelihood Fields for Range Findersp. 169
6.5 Correlation-Based Measurement Modelsp. 174
6.6 Feature-Based Measurement Modelsp. 176
6.7 Practical Considerationsp. 182
6.8 Summaryp. 183
6.9 Bibliographical Remarksp. 184
6.10 Exercisesp. 185
II Localizationp. 189
7 Mobile Robot Localization: Markov and Gaussianp. 191
7.1 A Taxonomy of Localization Problemsp. 193
7.2 Markov Localizationp. 197
7.3 Illustration of Markov Localizationp. 200
7.4 EKF Localizationp. 201
7.5 Estimating Correspondencesp. 215
7.6 Multi-Hypothesis Trackingp. 218
7.7 UKF Localizationp. 220
7.8 Practical Considerationsp. 229
7.9 Summaryp. 232
7.10 Bibliographical Remarksp. 233
7.11 Exercisesp. 234
8 Mobile Robot Localization: Grid And Monte Carlop. 237
8.1 Introductionp. 237
8.2 Grid Localizationp. 238
8.3 Monte Carlo Localizationp. 250
8.4 Localization in Dynamic Environmentsp. 267
8.5 Practical Considerationsp. 273
8.6 Summaryp. 274
8.7 Bibliographical Remarksp. 275
8.8 Exercisesp. 276
III Mappingp. 279
9 Occupancy Grid Mappingp. 281
9.1 Introductionp. 281
9.2 The Occupancy Grid Mapping Algorithmp. 284
9.3 Learning Inverse Measurement Modelsp. 294
9.4 Maximum A Posteriori Occupancy Mappingp. 299
9.5 Summaryp. 304
9.6 Bibliographical Remarksp. 305
9.7 Exercisesp. 307
10 Simultaneous Localization and Mappingp. 309
10.1 Introductionp. 309
10.2 SLAM with Extended Kalman Filtersp. 312
10.3 EKF SLAM with Unknown Correspondencesp. 323
10.4 Summaryp. 330
10.5 Bibliographical Remarksp. 332
10.6 Exercisesp. 334
11 The GraphSLAM Algorithmp. 337
11.1 Introductionp. 337
11.2 Intuitive Descriptionp. 340
11.3 The GraphSLAM Algorithmp. 346
11.4 Mathematical Derivation of GraphSLAMp. 353
11.5 Data Association in GraphSLAMp. 362
11.6 Efficiency Considerationp. 368
11.7 Empirical Implementationp. 370
11.8 Alternative Optimization Techniquesp. 376
11.9 Summaryp. 379
11.10 Bibliographical Remarksp. 381
11.11 Exercisesp. 382
12 The Sparse Extended Information Filterp. 385
12.1 Introductionp. 385
12.2 Intuitive Descriptionp. 388
12.3 The SEIF SLAM Algorithmp. 391
12.4 Mathematical Derivation of the SEIFp. 395
12.5 Sparsificationp. 398
12.6 Amortized Approximate Map Recoveryp. 402
12.7 How Sparse Should SEIFs Be?p. 405
12.8 Incremental Data Associationp. 409
12.9 Branch-and-Bound Data Associationp. 415
12.10 Practical Considerationsp. 420
12.11 Multi-Robot SLAMp. 424
12.12 Summaryp. 432
12.13 Bibliographical Remarksp. 434
12.14 Exercisesp. 435
13 The FastSLAM Algorithmp. 437
13.1 The Basic Algorithmp. 439
13.2 Factoring the SLAM Posteriorp. 439
13.3 FastSLAM with Known Data Associationp. 444
13.4 Improving the Proposal Distributionp. 451
13.5 Unknown Data Associationp. 457
13.6 Map Managementp. 459
13.7 The FastSLAM Algorithmsp. 460
13.8 Efficient Implementationp. 460
13.9 FastSLAM for Feature-Based Mapsp. 468
13.10 Grid-based FastSLAMp. 474
13.11 Summaryp. 479
13.12 Bibliographical Remarksp. 481
13.13 Exercisesp. 482
IV Planning and Controlp. 485
14 Markov Decision Processesp. 487
14.1 Motivationp. 487
14.2 Uncertainty in Action Selectionp. 490
14.3 Value Iterationp. 495
14.4 Application to Robot Controlp. 503
14.5 Summaryp. 507
14.6 Bibliographical Remarksp. 509
14.7 Exercisesp. 510
15 Partially Observable Markov Decision Processesp. 513
15.1 Motivationp. 513
15.2 An Illustrative Examplep. 515
15.3 The Finite World POMDP Algorithmp. 527
15.4 Mathematical Derivation of POMDPsp. 531
15.5 Practical Considerationsp. 536
15.6 Summaryp. 541
15.7 Bibliographical Remarksp. 542
15.8 Exercisesp. 544
16 Approximate POMDP Techniquesp. 547
16.1 Motivationp. 547
16.2 QMDPsp. 549
16.3 Augmented Markov Decision Processesp. 550
16.4 Monte Carlo POMDPsp. 559
16.5 Summaryp. 565
16.6 Bibliographical Remarksp. 566
16.7 Exercisesp. 566
17 Explorationp. 569
17.1 Introductionp. 569
17.2 Basic Exploration Algorithmsp. 571
17.3 Active Localizationp. 575
17.4 Exploration for Learning Occupancy Grid Mapsp. 580
17.5 Exploration for SLAMp. 593
17.6 Summaryp. 600
17.7 Bibliographical Remarksp. 602
17.8 Exercisesp. 604
Bibliographyp. 607
Indexp. 639