Cover image for Peptide and protein design for biopharmaceutical applications
Title:
Peptide and protein design for biopharmaceutical applications
Publication Information:
West Sussex, UK : John Wiley & Sons, 2009
Physical Description:
xii, 294 p. : ill. (some col.) ; 24 cm.
ISBN:
9780470319611
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010230355 RS431.P38 P464 2009 Open Access Book Book
Searching...

On Order

Summary

Summary

Peptides serve as effective drugs in the clinic today. However the inherent drawbacks of peptide structures can limit their efficacy as drugs. To overcome this researchers are developing new methods to create 'tailor-made' peptides and proteins with improved pharmacological properties.

Design of Peptides and Proteins provides an overview of the experimental and computational methods for peptide and protein design, with an emphasis on specific applications for therapeutics and biomedical research. Topics covered include:

Computer modeling of peptides and proteins Peptidomimetics Design and synthesis of cyclic peptides Carbohydrates in peptide and protein design De novo design of peptides and proteins Medical development applications An extended case study - the design of insulin variants

Design of Peptides and Proteins presents the state-of-the-art of this exciting approach for therapeutics, with contributions from international experts. It is an essential resource for academic and industrial scientists in the fields of peptide and protein drug design, biomedicine, biochemistry, biophysics, molecular modelling, synthetic organic chemistry and medicinal/pharmaceutical chemistry.


Author Notes

Knud J. Jensen, University of Copenhagen, Faculty of Life Sciences, Denmark
Professor Jensen's research interests cover synthetic bioorganic chemistry, peptide chemistry, carbohydrate chemistry, chemical protein synthesis, solid-phase synthesis and glycobiology.


Table of Contents

Knud J. JensenGregory V. Nikiforovicb and Garland R. MarshallVeronique Maes and Dirk TourwéOliver Demmer and Andreas O. Frank and Horst KesslerKnud J. Jensen and Jesper BraskKnud J. JensenThomas Hoeg-Jensen
List of Contributorsp. ix
Prefacep. xi
1 Introductionp. 1
2 Computational Approaches in Peptide and Protein Design: An Overviewp. 5
2.1 Introductionp. 5
2.2 Basics and Toolsp. 6
2.2.1 The Importance of Computational Approachesp. 6
2.2.2 Tools and Procedures: Force Fields and Samplingp. 9
2.3 Computational Study of Cyclopentapeptide Inhibitors of CXCR4p. 31
2.3.1 The 3D Pharmacophore Model for FC131p. 32
2.3.2 A 3D Model of the TM Region of CXCR4p. 36
2.3.3 Docking of FC131 to CXCR4p. 39
Acknowledgementsp. 42
Referencesp. 42
3 Aspects of Peptidomimeticsp. 49
3.1 Introductionp. 49
3.2 Modified Peptidesp. 51
3.3 Pseudopeptidesp. 65
3.4 Secondary Structure Mimics (Excluding Turn Mimics)p. 75
3.4.1 ß-strand Mimeticsp. 75
3.4.2 Helix Mimeticsp. 87
3.5 Examples of Peptidomimeticsp. 92
3.6 Conclusionp. 104
Referencesp. 105
4 Design of Cyclic Peptidesp. 133
4.1 Introductionp. 133
4.1.1 Pharmaceutical Research Todayp. 133
4.1.2 General Advantages of Cyclic Peptide Structuresp. 134
4.1.3 Examples of Cyclic Peptides of Medicinal Interestp. 135
4.1.4 General Considerationsp. 137
4.2 Peptide Cyclizationp. 138
4.2.1 Possibilities of Peptide Cyclizationp. 138
4.2.2 Synthesis of Cyclic Peptidesp. 139
4.2.3 Chemical Modifications of Cyclic Peptidesp. 141
4.2.4 Concluding Remarksp. 146
4.3 Conformation and Dynamics of Cyclic Peptidesp. 146
4.3.1 Reductions in Conformational Spacep. 146
4.3.2 Conformational Arrangements in Cyclic Structuresp. 148
4.3.3 Flexibility of Cyclized Scaffoldsp. 151
4.3.4 Experimental Structure Characterizationp. 152
4.4 Concepts in the Rational Design of Cyclic Peptidesp. 154
4.4.1 The Influence of Amino Acid Compositionp. 154
4.4.2 The Dunitz-Waser Conceptp. 155
4.4.3 The Spatial Screening Techniquep. 156
4.4.4 General Strategy for Finding Active Hitsp. 157
4.5 Examples of Cyclic Peptides as Drug Candidatesp. 159
4.5.1 Cilengitide as Integrin Inhibitorp. 159
4.5.2 CXCR4 Antagonistsp. 163
4.5.3 Sandostatin and the Veber-Hirschmann Peptide as Examples of Rational Designp. 164
4.6 Conclusionp. 166
Referencesp. 166
5 Carbohydrates in Peptide and Protein Designp. 177
5.1 Introductionp. 177
5.2 Configurational and Conformational Properties of Carbohydratesp. 178
5.3 Carbohydrates in Peptidomimeticsp. 181
5.4 Glycopeptidesp. 183
5.5 Carbohydrates as Scaffolds in the Design of Nonpeptide Peptidomimeticsp. 185
5.6 Sugar Amino Acidsp. 187
5.7 Cyclodextrin-Peptide Conjugatesp. 193
5.8 Carboproteins: Protein Models on Carbohydrate Templatesp. 198
5.9 Conclusionp. 199
Referencesp. 200
6 De Novo Design of Proteinsp. 207
6.1 Introductionp. 207
6.2 Secondary Structure Elementsp. 208
6.2.1 The ¿-helixp. 208
6.2.2 The ß-sheetp. 214
6.2.3 Loops, Turns and Templatesp. 214
6.3 Assembling a Specified Tertiary Structure from Secondary Structural Elementsp. 215
6.3.1 Computational Methodsp. 215
6.3.2 Coiled Coilsp. 216
6.3.3 ¿-helical Bundlesp. 220
6.3.4 Fluorous Interactionsp. 225
6.3.5 Additional Topicsp. 228
6.4 Proteins on Templatesp. 229
6.5 Foldamersp. 234
6.6 Biopharmaceutical Applications of De Novo Designp. 236
6.6.1 ¿-helical Structures in Biopharmaceutical Applicationsp. 236
6.6.2 Foldamers in Biopharmaceutical Applicationsp. 238
Referencesp. 238
7 Design of Insulin Variants for Improved Treatment of Diabetesp. 249
7.1 Introductionp. 249
7.2 Diabetes Management and the Need for Insulin Engineeringp. 251
7.3 Insulin Structurep. 256
7.4 Prolonged-acting Insulin Solidsp. 258
7.5 Prolonged-acting Insulin Solutionsp. 259
7.6 Fast-acting Insulinsp. 265
7.7 Glucose-sensitive Insulin Preparationsp. 267
7.8 Alternative Insulin Deliveryp. 271
7.9 Insulin Mimeticsp. 272
7.10 Pushing the Limits of Insulin Engineeringp. 273
7.11 Conclusionp. 274
Referencesp. 275
Indexp. 287