Cover image for Deploying IP and MPLS QoS for multiservice networks : theory and practice
Title:
Deploying IP and MPLS QoS for multiservice networks : theory and practice
Personal Author:
Publication Information:
San Francisco, CA : Morgan Kaufmann, 2007
ISBN:
9780123705495
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010141298 TK5105.5956 E82 2007 Open Access Book Book
Searching...

On Order

Summary

Summary

QoS, short for "quality of service," is one of the most important goals a network designer or administrator will have. Ensuring that the network runs at optimal precision with data remaining accurate, traveling fast, and to the correct user are the main objectives of QoS. The various media that fly across the network including voice, video, and data have different idiosyncrasies that try the dimensions of the network. This malleable network architecture poses an always moving potential problem for the network professional.

The authors have provided a comprehensive treatise on this subject. They have included topics such as traffic engineering, capacity planning, and admission control. This book provides real world case studies of QoS in multiservice networks. These case studies remove the mystery behind QoS by illustrating the how, what, and why of implementing QoS within networks. Readers will be able to learn from the successes and failures of these actual working designs and configurations.


Table of Contents

Prefacep. xiii
Acknowledgmentsp. xxi
About the authorsp. xxiii
1 QOS Requirements and Service Level Agreementsp. 1
1.1 Introductionp. 1
1.2 SLA Metricsp. 4
1.2.1 Network Delayp. 4
1.2.1.1 Propagation Delayp. 5
1.2.1.2 Switching Delayp. 6
1.2.1.3 Scheduling Delayp. 6
1.2.1.4 Serialization Delayp. 6
1.2.2 Delay-jitterp. 8
1.2.3 Packet Lossp. 9
1.2.4 Bandwidth and Throughputp. 12
1.2.4.1 Layer 2 Overheadsp. 13
1.2.4.2 VPN Hose and Pipe Modelsp. 16
1.2.5 Per Flow Sequence Preservationp. 18
1.2.6 Availabilityp. 20
1.2.6.1 Network Availabilityp. 20
1.2.6.2 Service Availabilityp. 21
1.2.7 Quality of Experiencep. 22
1.2.7.1 Voicep. 23
1.2.7.2 Videop. 24
1.2.7.3 On-line Gamingp. 24
1.3 Application SLA Requirementsp. 24
1.3.1 Voice over IPp. 26
1.3.1.1 VoIP: Impact of Delayp. 29
1.3.1.2 VoIP: Impact of Delay-jitterp. 31
1.3.1.3 VoIP: Impact of Lossp. 33
1.3.1.4 VoIP: Impact of Throughputp. 36
1.3.1.5 VoIP: Impact of Packet Re-orderingp. 37
1.3.2 Videop. 38
1.3.2.1 Video Streamingp. 38
1.3.2.2 Video Conferencingp. 57
1.3.3 Data Applicationsp. 58
1.3.3.1 Throughput Focussed TCP Applicationsp. 59
1.3.3.2 Interactive Data Applicationsp. 70
1.3.3.3 On-line Gamingp. 74
1.4 Marketed SLAs versus Engineered SLAsp. 16
1.4.1 End-to-End SLAs vs Segmented SLAsp. 77
1.4.2 Inter-provider SLAsp. 77
1.5 Intserv and Diffserv SLAsp. 78
Referencesp. 79
2 Introduction to QOS Mechanics and Architecturesp. 87
2.1 What is Quality of Service?p. 87
2.1.1 Quality of Service vs Class of Service or Type of Service?p. 88
2.1.2 Best-effort Servicep. 89
2.1.3 The Timeframes that Matter for QOSp. 90
2.1.4 Why IP QOS?p. 91
2.1.5 The QOS Toolsetp. 91
2.2 Data Plane QOS Mechanismsp. 94
2.2.1 Classificationp. 94
2.2.1.1 Implicit Classificationp. 95
2.2.1.2 Complex Classificationp. 95
2.2.1.3 Deep Packet Inspection/Stateful Inspectionp. 96
2.2.1.4 Simple Classificationp. 96
2.2.2 Markingp. 99
2.2.3 Policing and Meteringp. 100
2.2.3.1 RFC 2697: Single Rate Three Color Markerp. 102
2.2.3.2 RFC 2698: Two Rate Three Color Markerp. 106
2.2.3.3 Color-aware Policersp. 108
2.2.3.4 Meteringp. 111
2.2.4 Queuing, Scheduling, Shaping, and Droppingp. 112
2.2.4.1 Queuing and Schedulingp. 112
2.2.4.2 Droppingp. 128
2.2.4.3 Shapingp. 137
2.2.5 Link Fragmentation and Interleavingp. 140
2.3 IP QOS Architecturesp. 141
2.3.1 A Short History of IP Quality of Servicep. 141
2.3.2 Type of Service/IP Precedencep. 142
2.3.2.1 IP Precedencep. 144
2.3.2.2 Type of Servicep. 145
2.3.2.3 IPv6 Traffic Class Octetp. 147
2.3.3 Integrated Services Architecturep. 147
2.3.4 Differentiated Services Architecturep. 147
2.3.4.1 DS Fieldp. 150
2.3.4.2 Per-Hop Behaviorsp. 154
2.3.4.3 Per-Domain Behaviorsp. 159
2.3.4.4 Explicit Congestion Notificationp. 160
2.3.4.5 Diffserv Tunneling Modelsp. 165
2.3.5 IPv6 QOS Architecturesp. 170
2.3.6 MPLS QOS Architecturesp. 171
2.3.6.1 MPLS and Intserv/RSVPp. 172
2.3.6.2 MPLS and Diffservp. 173
2.3.7 IP Multicast and QOSp. 181
2.4 Typical Router QOS Implementations in Practicep. 183
2.5 Layer 2 QOSp. 189
2.5.1 ATMp. 190
2.5.1.1 Mapping Diffserv to ATM QOSp. 193
2.5.2 Frame-relayp. 194
2.5.3 Ethernetp. 196
2.6 Complementary Technologiesp. 197
2.7 Where QOS cannot make a differencep. 198
Referencesp. 199
Appendix 2.A Precedence, TOS, and DSCP Conversionp. 204
2.A.1 Notationp. 204
2.A.2 Conversionp. 205
3 Deploying Diffservp. 209
3.1 Introductionp. 209
3.2 Deploying Diffserv at the Network Edgep. 211
3.2.1 Why is the Edge Key for Tight SLA Services?p. 211
3.2.2 Edge Diffserv Case Studyp. 212
3.2.2.1 SLA Specificationp. 212
3.2.2.2 Diffserv Meta-Languagep. 218
3.2.2.3 High-speed Edge Designp. 218
3.2.2.4 Design Variationsp. 225
3.2.2.5 Edge SLA Summaryp. 241
3.2.2.6 How Many Classes are Enough?p. 241
3.2.2.7 What Marking Scheme to Use?p. 244
3.2.2.8 VoIP - How Much is Enough at the Edge?p. 245
3.3 Deploying Diffserv in the Network Backbonep. 249
3.3.1 Is Diffserv Needed in the Backbone?p. 249
3.3.2 Core Case Studyp. 253
3.3.2.1 Core Classes of Service and SLA Specificationp. 253
3.3.2.2 "Prioritized" Diffserv Core Modelp. 254
3.3.2.3 Detailed Core Designp. 256
3.3.2.4 Design Variationsp. 261
3.3.2.5 Core-marking Schemep. 263
3.4 Tuning (W)REDp. 268
3.4.1 Tuning the Exponential Weighting Constantp. 269
3.4.2 Tuning Minth and Maxthp. 270
3.4.3 Mark Probability Denominatorp. 271
3.4.4 In- and Out-of-contractp. 271
Referencesp. 272
4 Capacity Admission Controlp. 275
4.1 Introductionp. 275
4.1.1 When is Admission Control Needed?p. 277
4.1.2 A Taxonomy for Admission Controlp. 282
4.1.3 What Information is Needed for Admission Control?p. 285
4.1.4 Parameterized or Measurements-based Algorithmsp. 286
4.1.4.1 Parameterized Algorithmsp. 286
4.1.4.2 Measurement-based Algorithmsp. 288
4.2 Topology-unaware Off-path CACp. 290
4.3 Topology-aware Off-path CAC: "Bandwidth Manager"p. 292
4.3.1 Example Bandwidth Manager Method of Operation: Next Generation Network Voice CACp. 294
4.4 The Integrated Services Architecture/RSVPp. 303
4.4.1 RSVPp. 304
4.4.2 RSVP Example Reservation Setupp. 307
4.4.3 Application Signaling Interactionp. 314
4.4.4 Intserv over Diffservp. 316
4.4.5 RSVP Aggregationp. 320
4.4.6 RSVP Traffic Engineeringp. 325
4.5 NSISp. 326
4.6 End-system Measurement-based Admission Controlp. 328
4.7 Summaryp. 329
Referencesp. 330
5 SLA and Network Monitoringp. 335
5.1 Introductionp. 335
5.2 Passive Network Monitoringp. 336
5.2.1 How Often to Poll?p. 337
5.2.2 Per-link Statisticsp. 337
5.2.2.1 Monitoring Classificationp. 338
5.2.2.2 Monitoring Policingp. 339
5.2.2.3 Monitoring Queuing and Droppingp. 342
5.2.3 System Monitoringp. 346
5.2.4 Core Traffic Matrixp. 347
5.3 Active Network Monitoringp. 348
5.3.1 Test Stream Parametersp. 349
5.3.1.1 Packet Sizep. 350
5.3.1.2 Sampling Strategyp. 351
5.3.1.3 Test Ratep. 354
5.3.1.4 Test Duration and Frequencyp. 355
5.3.1.5 Protocols, Ports, and Applicationsp. 357
5.3.2 Active Measurement Metricsp. 358
5.3.2.1 Delayp. 358
5.3.2.2 Delay-jitterp. 360
5.3.2.3 Packet Lossp. 362
5.3.2.4 Bandwidth and Throughputp. 363
5.3.2.5 Re-orderingp. 363
5.3.2.6 Availabilityp. 363
5.3.2.7 Quality of Experiencep. 364
5.3.3 Deployment Considerationsp. 364
5.3.3.1 External versus Embedded Agentsp. 364
5.3.3.2 Active Monitoring Topologiesp. 365
5.3.3.3 Measuring Equal Cost Multiple Pathsp. 369
5.3.3.4 Clock Synchronizationp. 370
Referencesp. 371
6 Core Capacity Planning and Traffic Engineeringp. 375
6.1 Core Network Capacity Planningp. 375
6.1.1 Capacity Planning Methodologyp. 376
6.1.2 Collecting the Traffic Demand Matricesp. 377
6.1.3 Determine Appropriate Over-provisioning Factorsp. 382
6.1.4 Simulation and Analysisp. 388
6.2 IP Traffic Engineeringp. 389
6.2.1 The Problemp. 390
6.2.2 IGP Metric-based Traffic Engineeringp. 394
6.2.3 MPLS Traffic Engineeringp. 397
6.2.3.1 MPLS TE Example Tunnel Establishmentp. 397
6.2.3.2 Diffserv-aware MPLS Traffic Engineeringp. 404
6.2.3.3 MPLS TE Deployment Models and Considerationsp. 408
6.2.3.4 Setting Tunnel Bandwidthp. 412
Referencesp. 414
Indexp. 419