Cover image for Performance analysis of queuing and computer networks
Title:
Performance analysis of queuing and computer networks
Personal Author:
Series:
Chapman & Hall/CRC computer and information science series
Publication Information:
Boca Raton : CRC Press/Taylor & Francis, 2008
Physical Description:
xxi, 449 p. : ill. ; 25 cm
ISBN:
9781584889861

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010205731 TK5105.5956 D37 2008 Open Access Book Book
Searching...
Searching...
30000003506494 TK5105.5956 D37 2008 Open Access Book Book
Searching...

On Order

Summary

Summary

Performance Analysis of Queuing and Computer Networks develops simple models and analytical methods from first principles to evaluate performance metrics of various configurations of computer systems and networks. It presents many concepts and results of probability theory and stochastic processes.

After an introduction to queues in computer networks, this self-contained book covers important random variables, such as Pareto and Poisson, that constitute models for arrival and service disciplines. It then deals with the equilibrium M/M/1/∞queue, which is the simplest queue that is amenable for analysis. Subsequent chapters explore applications of continuous time, state-dependent single Markovian queues, the M/G/1 system, and discrete time queues in computer networks. The author then proceeds to study networks of queues with exponential servers and Poisson external arrivals as well as the G/M/1 queue and Pareto interarrival times in a G/M/1 queue. The last two chapters analyze bursty, self-similar traffic, and fluid flow models and their effects on queues.


Author Notes

Dattatreya, G.R.


Table of Contents

1 Introductionp. 1
1.1 Backgroundp. 1
1.2 Queues in Computers and Computer Networksp. 2
1.2.1 Single processor systemsp. 2
1.2.2 Synchronous multi-processor systemsp. 3
1.2.3 Distributed operating systemp. 3
1.2.4 Data communication networksp. 3
1.2.4.1 Data transfer in communication networksp. 3
1.2.4.2 Organization of a computer networkp. 4
1.2.5 Queues in data communication networksp. 5
1.3 Queuing Modelsp. 6
1.4 Conclusionp. 9
2 Characterization of Data Trafficp. 13
2.1 Introductionp. 13
2.2 The Pareto Random Variablep. 15
2.3 The Poisson Random Variablep. 22
2.3.1 Derivation of the Poisson pmfp. 23
2.3.2 Interarrival times in a Poisson sequence of arrivalsp. 25
2.3.3 Properties of Poisson streams of arrivalsp. 26
2.3.3.1 Mean of exponential random variablep. 26
2.3.3.2 Mean of the Poisson random variablep. 27
2.3.3.3 Variance of the exponential random variablep. 28
2.3.3.4 Variance of Poisson random variablep. 29
2.3.3.5 The Z transform of a Poisson random variablep. 29
2.3.3.6 Memoryless property of the exponential random variablep. 30
2.3.3.7 Time for the next arrivalp. 31
2.3.3.8 Nonnegative, continuous, memoryless random variablesp. 31
2.3.3.9 Succession of iid exponential interarrival timesp. 31
2.3.3.10 Merging two independent Poisson streamsp. 32
2.3.3.11 iid probabilistic routing into a forkp. 35
2.4 Simulationp. 37
2.4.1 Technique for simulationp. 37
2.4.2 Generalized Bernoulli random numberp. 37
2.4.3 Geometric and modified geometric random numbersp. 39
2.4.4 Exponential random numberp. 39
2.4.5 Pareto random numberp. 40
2.5 Elements of Parameter Estimationp. 42
2.5.1 Parameters of Pareto random variablep. 43
2.5.2 Properties of estimatorsp. 46
2.6 Sequences of Random Variablesp. 47
2.6.1 Certain and almost certain eventsp. 49
2.7 Elements of Digital Communication and Data Link Performancep. 52
2.7.1 The Gaussian noise modelp. 52
2.7.2 Bit error rate evaluationp. 54
2.7.3 Frame error rate evaluationp. 56
2.7.4 Data rate optimizationp. 57
2.8 Exercisesp. 59
3 The M/M/1/[infinity] Queuep. 63
3.1 Introductionp. 63
3.2 Derivation of Equilibrium State Probabilitiesp. 64
3.2.1 Operation in equilibriump. 70
3.2.2 Setting the system to start in equilibriump. 71
3.3 Simple Performance Figuresp. 72
3.4 Response Time and its Distributionp. 76
3.5 More Performance Figures for M/M/1/[infinity] Systemp. 77
3.6 Waiting Time Distributionp. 80
3.7 Departures from Equilibrium M/M/1/[infinity] Systemp. 81
3.8 Analysis of ON-OFF Model of Packet Departuresp. 86
3.9 Round Robin Operating Systemp. 88
3.10 Examplesp. 94
3.11 Analysis of Busy Timesp. 96
3.11.1 Combinations of arrivals and departures during a busy time periodp. 98
3.11.2 Density function of busy timesp. 99
3.11.3 Laplace transform of the busy timep. 101
3.12 Forward Data Link Performance and Optimizationp. 104
3.12.1 Reliable communication over unreliable data linksp. 104
3.12.2 Problem formulation and solutionp. 105
3.13 Exercisesp. 109
4 State Dependent Markovian Queuesp. 115
4.1 Introductionp. 115
4.2 Stochastic Processesp. 115
4.2.1 Markov processp. 117
4.3 Continuous Parameter Markov Chainsp. 118
4.3.1 Time intervals between state transitionsp. 118
4.3.2 State transition diagramsp. 118
4.3.3 Development of balance equationsp. 119
4.3.4 Graphical method to write balance equationsp. 123
4.4 Markov Chains for State Dependent Queuesp. 124
4.4.1 State dependent rates and equilibrium probabilitiesp. 124
4.4.2 General performance figuresp. 127
4.4.2.1 Throughputp. 127
4.4.2.2 Blocking probabilityp. 127
4.4.2.3 Expected fraction of lost jobsp. 127
4.4.2.4 Expected number of customers in the systemp. 128
4.4.2.5 Expected response timep. 128
4.5 Intuitive Approach for Time Averagesp. 129
4.6 Statistical Analysis of Markov Chains' Sample Functionsp. 132
4.7 Little's Resultp. 141
4.7.1 FIFO casep. 141
4.7.2 Non-FIFO casep. 142
4.8 Application Systemsp. 143
4.8.1 Constant rate finite buffer M/M/1/k systemp. 143
4.8.2 Forward data link with a finite bufferp. 146
4.8.3 M/M/[infinity] or immediate servicep. 147
4.8.4 Parallel serversp. 148
4.8.5 Client-server modelp. 152
4.9 Medium Access in Local Area Networksp. 160
4.9.1 Heavily loaded channel with a contention based transmission protocolp. 160
4.9.1.1 Consequences of modeling approximationsp. 161
4.9.1.2 Analysis stepsp. 162
4.9.2 A simple contention-free LAN protocolp. 163
4.10 Exercisesp. 170
5 The M/G/1 Queuep. 179
5.1 Introductionp. 179
5.2 Imbedded Processesp. 180
5.3 Equilibrium and Long Term Operation of M/G/1/[infinity] Queuep. 181
5.3.1 Recurrence equations for state sequencep. 181
5.3.2 Analysis of equilibrium operationp. 183
5.3.3 Statistical behavior of the discrete parameter sample functionp. 185
5.3.4 Statistical behavior of the continuous time stochastic processp. 189
5.3.5 Poisson arrivals see time averagesp. 190
5.4 Derivation of the Pollaczek-Khinchin Mean Value Formulap. 193
5.4.1 Performance figuresp. 198
5.5 Application Examplesp. 198
5.5.1 M/D/1/[infinity]: Constant service timep. 198
5.5.2 M/U/1/[infinity]: Uniformly distributed service timep. 198
5.5.3 Hypoexponential service timep. 199
5.5.4 Hyperexponential service timep. 199
5.6 Special Casesp. 200
5.6.1 Pareto service times with infinite variancep. 200
5.6.2 Finite buffer M/G/1 systemp. 200
5.7 Exercisesp. 202
6 Discrete Time Queuesp. 209
6.1 Introductionp. 209
6.2 Timing and Synchronizationp. 209
6.3 State Transitions and Their Probabilitiesp. 211
6.4 Discrete Parameter Markov Chainsp. 216
6.4.1 Homogeneous Markov chainsp. 218
6.4.2 Chapman-Kolmogorov equationsp. 220
6.4.3 Irreducible Markov chainsp. 220
6.5 Classification of Statesp. 223
6.5.1 Aperiodic statesp. 223
6.5.2 Transient and recurrent statesp. 226
6.6 Analysis of Equilibrium Markov Chainsp. 231
6.6.1 Balance equationsp. 232
6.6.2 Time averagesp. 239
6.6.3 Long term behavior of aperiodic chainsp. 240
6.6.4 Continuous parameter Markov chainsp. 244
6.7 Performance Evaluation of Discrete Time Queuesp. 245
6.7.1 Throughputp. 245
6.7.2 Buffer occupancyp. 246
6.7.3 Response timep. 247
6.7.4 Relationship between [pi subscript c] and [pi subscript e]p. 248
6.8 Applicationsp. 249
6.8.1 The general Geom/Geom/m/k queuep. 253
6.8.1.1 Transition probabilitiesp. 253
6.8.1.2 Equilibrium state probabilitiesp. 254
6.8.2 Slotted crossbarp. 256
6.8.3 Late arrival systemsp. 258
6.9 Conclusionp. 259
6.10 Exercisesp. 259
7 Continuous Time Queuing Networksp. 267
7.1 Introductionp. 267
7.2 Model and Notation for Open Networksp. 268
7.3 Global Balance Equationsp. 270
7.4 Traffic Equationsp. 273
7.5 The Product Form Solutionp. 276
7.6 Validity of Product Form Solutionp. 278
7.7 Development of Product Form Solution for Closed Networksp. 282
7.8 Convolution Algorithmp. 286
7.9 Performance Figures from the g(n, m) Matrixp. 288
7.9.1 Marginal state probabilitiesp. 288
7.9.2 Average number in a stationp. 289
7.9.3 Throughput in a stationp. 289
7.9.4 Utilization in a stationp. 289
7.9.5 Expected response time in a stationp. 290
7.10 Mean Value Analysisp. 293
7.10.1 Arrival theoremp. 294
7.10.2 Cyclic networkp. 295
7.10.2.1 MVA for cyclic queuesp. 295
7.10.3 Noncyclic closed networksp. 296
7.10.3.1 MVA for noncyclic networksp. 298
7.11 Conclusionp. 301
7.12 Exercisesp. 301
8 The G/M/1 Queuep. 307
8.1 Introductionp. 307
8.2 The Imbedded Markov Chain for G/M/1/[infinity] Queuep. 307
8.3 Analysis of the Parameter [alpha]p. 313
8.3.1 Stability criterion in terms of the parameters of the queuep. 317
8.3.2 Determination of [alpha]p. 319
8.4 Performance Figures in G/M/1/[infinity] Queuep. 321
8.4.1 Expected response timep. 321
8.4.2 Expected number in the systemp. 321
8.5 Finite Buffer G/M/1/k Queuep. 322
8.6 Pareto Arrivals in a G/M/1/[infinity] Queuep. 323
8.7 Exercisesp. 326
9 Queues with Bursty, MMPP, and Self-Similar Trafficp. 329
9.1 Introductionp. 329
9.2 Distinction between Smooth and Bursty Trafficp. 331
9.3 Self-Similar Processesp. 334
9.3.1 Fractional Brownian motionp. 335
9.3.2 Discrete time fractional Gaussian noise and its propertiesp. 336
9.3.3 Problems in generation of pure FBMp. 337
9.4 Hyperexponential Approximation to Shifted Pareto Interarrival Timesp. 337
9.5 Characterization of Merged Packet Sourcesp. 339
9.6 Product Form Solution for the Traffic Source Markov Chainp. 340
9.6.1 Evaluation of h, the Constant in the Product Form Solutionp. 343
9.7 Joint Markov Chain for the Traffic Source and Queue Lengthp. 344
9.8 Evaluation of Equilibrium State Probabilitiesp. 348
9.8.1 Analysis of the sequence R[subscript (n)]p. 351
9.9 Queues with MMPP Traffic and Their Performancep. 355
9.10 Performance Figuresp. 357
9.11 Conclusionp. 357
9.12 Exercisesp. 358
10 Analysis of Fluid Flow Modelsp. 363
10.1 Introductionp. 363
10.2 Leaky Bucket with Two State ON-OFF Inputp. 364
10.2.1 Development of differential equations for buffer contentp. 365
10.2.2 Stability conditionp. 376
10.3 Little's Result for Fluid Flow Systemsp. 377
10.4 Output Process of Buffer Fed by Two State ON-OFF chainp. 382
10.5 General Fluid Flow Model and its Analysisp. 384
10.6 Leaky Bucket Fed by M/M/1/[infinity] Queue Outputp. 387
10.7 Exercisesp. 394
A Review of Probability Theoryp. 397
A.1 Random Experimentp. 397
A.2 Axioms of Probabilityp. 397
A.2.1 Some useful resultsp. 398
A.2.2 Conditional probability and statistical independencep. 399
A.3 Random Variablep. 400
A.3.1 Cumulative distribution functionp. 401
A.3.2 Discrete random variables and the probability mass functionp. 402
A.3.3 Continuous random variables and the probability density functionp. 403
A.3.4 Mixed random variablesp. 404
A.4 Conditional pmf and Conditional pdfp. 405
A.5 Expectation, Variance, and Momentsp. 407
A.5.1 Conditional expectationp. 411
A.6 Theorems Connecting Conditional and Marginal Functionsp. 412
A.7 Sums of Random Variablesp. 415
A.7.1 Sum of two discrete random variablesp. 415
A.7.2 Sum of two continuous random variablesp. 416
A.8 Bayes' Theoremp. 417
A.9 Function of a Random Variablep. 421
A.9.1 Discrete function of a random variablep. 421
A.9.1.1 Discrete function of a discrete random variablep. 421
A.9.1.2 Discrete function of a continuous random variablep. 422
A.9.2 Strictly monotonically increasing functionp. 422
A.9.3 Strictly monotonically decreasing functionp. 423
A.9.4 The general case of a function of a random variablep. 423
A.10 The Laplace Transform Lp. 428
A.11 The Z Transformp. 430
A.12 Exercisesp. 434
Indexp. 436