Cover image for Designing bipolar transistor radio frequency integrated circuits
Title:
Designing bipolar transistor radio frequency integrated circuits
Personal Author:
Series:
Artech House microwave library
Publication Information:
Boston, MA : Artech House Publishers, 2008
Physical Description:
xi, 317 p. : ill. ; 25 cm.
ISBN:
9781596931282

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010169233 TK7874.78 S93 2008 Open Access Book Book
Searching...

On Order

Summary

Summary

Radio frequency integrated circuits (RFICs) are an important part of today's wireless communications devices and infrastructure. An RFIC design approach involving cutting-edge bipolar technologies (GaAs HBT or SiGe HBT) has gained popularity among engineers due to its ability to maximize performance; however, it has been largely ignored in professional reference books. This book fills the gap, offering practitioners a detailed treatment of this increasingly important topic. From discussions of key applications (Bluetooth, UWB, GPS, WiMax) and architectures to in-depth coverage of fabrication technologies and amplifier design to a look at performance tradeoffs and production costs, this book arms engineers with complete design know-how for their challenging work in the field.


Author Notes

Allen A. Sweet is an adjunct professor of electrical engineering at Santa Clara University.


Table of Contents

Acknowledgmentsp. xi
Chapter 1 Introductionp. 1
Referencesp. 11
Chapter 2 Applicationsp. 13
2.1 Cellular/PCS Handsetsp. 13
2.2 Cellular/PCS Infrastructurep. 15
2.3 WLANsp. 16
2.4 Bluetoothp. 17
2.5 UWBp. 18
2.6 WiMaxp. 19
2.7 Digital TV and Set-Top Boxesp. 20
2.8 Cognitive Radiop. 20
2.9 Spectrum Allocation in the United States (All Frequencies in Megahertz)p. 21
2.10 Physical Layer Standardsp. 22
Referencesp. 24
Chapter 3 RFIC Architecturesp. 25
3.1 I/Q Receiversp. 25
3.2 I/Q Modulatorsp. 30
3.3 Nonzero IF Receiversp. 32
3.4 Zero IF Receiversp. 37
3.5 Differential versus Single-Ended Topologiesp. 41
Referencesp. 41
Chapter 4 InGaP/GaAs HBT Fabrication Technologyp. 43
4.1 Transistor Structuresp. 43
4.2 Device Modelsp. 45
4.3 Passive Structures, Their Electrical Models, and Layout Design Rulesp. 48
4.3.1 Microstrip Linesp. 53
4.3.2 TFR Resistorsp. 55
4.3.3 M1-to-M2 Viasp. 57
4.3.4 MIM Capacitorsp. 57
4.3.5 Substrate Viasp. 58
4.3.6 Bonding Padsp. 60
4.3.7 Crossover Capacitancesp. 61
4.3.8 Spiral Inductorsp. 62
4.3.9 Transistor Dummy Cellsp. 64
4.3.10 Significant Layout Parasitic Elementsp. 65
4.3.11 Simple Layout Examplep. 65
4.4 Maximum Electrical Ratingsp. 67
4.5 CAD Layout Toolsp. 70
Referencesp. 70
Chapter 5 SiGe HBT Fabrication Technologyp. 71
5.1 SiGe HBT Transistor Structuresp. 71
5.2 Transistor Device Modelsp. 79
5.3 Passive Device Structures and Modelsp. 81
5.4 Design Rulesp. 86
5.5 CAD Layoutp. 86
Referencesp. 87
Chapter 6 Passive Circuit Designp. 89
6.1 Low-Pass Filtersp. 89
6.2 High-Pass Filtersp. 93
6.3 Band-Pass Filtersp. 93
6.4 Differential Filtersp. 95
6.5 Technology and Substratesp. 99
6.6 Splitters/Dividersp. 99
6.7 Phase Shifters and Balunsp. 102
Referencesp. 104
Chapter 7 Amplifier Design Basicsp. 105
7.1 Matching Techniquesp. 105
7.2 Gain Compensationp. 106
7.3 Fano's Limitp. 106
7.4 Stabilityp. 107
7.5 Noise Matchp. 109
7.6 Differential Amplifiersp. 109
7.7 Cascode Amplifiersp. 111
Referencesp. 113
Chapter 8 Low-Noise Amplifier Designp. 115
8.1 Noise Figure Conceptsp. 115
8.2 Noise Temperaturep. 116
8.3 Front-end Attenuation and LNAsp. 117
8.4 Multistage Noise Figure Contributionsp. 117
8.5 Circuit Topologies for Low Noisep. 118
8.6 Design Example 1: Single-Ended PCS LNAp. 126
8.7 Design Example 2: Three-Transistor Hybrid Darlington Differential LNA Using SiGe Technologyp. 127
Referencesp. 132
Chapter 9 Power Amplifier Designp. 133
9.1 Loadline Conceptsp. 134
9.2 Maximum Power and Efficiencyp. 136
9.3 Class AB Power Amplifiersp. 139
9.4 Definitions of Nonlinear Performance Metricsp. 141
9.5 Adjacent Channel Power Ratiop. 145
9.6 Error Vector Magnitudep. 146
9.7 Circuit Topologies for PAsp. 147
9.8 Matching Circuit Optionsp. 149
9.9 Stabilityp. 150
9.10 Bias Circuitsp. 150
9.11 Design Example 3: Wideband Gain Block Darlington Amplifierp. 154
9.12 Design Example 4: Feedback Power Amplifier Designp. 164
Referencesp. 171
Chapter 10 Designing Multistage Amplifiersp. 173
10.1 Multistage LNAsp. 173
10.2 Multistage Power Amplifiersp. 175
10.3 Gain and Power Allocationsp. 177
10.4 Active Device Sizingp. 177
10.5 Design Example 5: A Differential PCS PAp. 181
Referencesp. 194
Chapter 11 Mixer/Modulator Designp. 195
11.1 Mixer Basicsp. 195
11.2 Diode Mixersp. 197
11.3 Single-Balanced Active Multiplying Mixersp. 200
11.4 Fully Balanced Active Multiplying Mixers (Gilbert Cell)p. 205
11.5 I/Q Mixersp. 217
11.6 I/Q Modulatorsp. 219
11.7 Design Example 6: Cellular/PCS Downconverting Mixer RFICp. 221
Referencesp. 230
Chapter 12 Frequency Multiplier Designp. 231
12.1 Frequency Doublersp. 231
12.2 Frequency Triplersp. 233
12.3 Frequency Translatorsp. 235
Referencesp. 239
Chapter 13 Voltage-Controlled Oscillator Designp. 241
13.1 Varactor Diode Basicsp. 242
13.2 Negative-Resistance Conceptsp. 248
13.3 Types of Resonatorsp. 252
13.4 Feedback Circuit Topologies for Producing Negative Resistancep. 252
13.4.1 Negative-Resistance Oscillator Circuitsp. 252
13.4.2 The Colpitts Oscillator Circuitp. 258
13.5 Frequency-Temperature Stabilityp. 261
13.6 Phase Noisep. 263
13.7 Quadrature Phase-Shifting Networksp. 266
13.8 Ring Oscillatorsp. 267
13.9 Design Example 7: 802.11a (Wi-Fi A) Differential VCOp. 272
13.10 Figure of Meritp. 278
13.11 Electronic Tuning and a Differential VCO Topologyp. 279
Referencesp. 281
Chapter 14 Layout Design Strategiesp. 283
14.1 Minimum Areap. 283
14.2 "On-Chip" versus "Off-Chip" Component Decisionsp. 283
14.3 Minimizing Parasiticsp. 284
14.4 Testabilityp. 285
14.5 Types of CAD Systemsp. 286
14.6 Foundry Comparisonp. 287
14.7 Reticle Assemblyp. 289
Chapter 15 RFIC Economicsp. 293
15.1 Levels of Integrationp. 293
15.2 Single-Ended versus Differential Topologiesp. 294
15.3 Process Technology Choicesp. 295
15.4 Area versus Performance Trade-offsp. 296
15.5 Electrical Yieldp. 297
15.6 Prototype Costsp. 298
15.7 Production Costsp. 298
Acronymsp. 301
About the Authorp. 305
Indexp. 307