Cover image for Control components using Si, GaAs, and GaN technologies
Title:
Control components using Si, GaAs, and GaN technologies
Personal Author:
Series:
Artech House microwave library
Publication Information:
Boston : Artech House, 2014
Physical Description:
xiii, 310 pages : illustrations ; 26 cm.
ISBN:
9781608077113

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010335014 TK7867 B34 2014 Open Access Book Book
Searching...

On Order

Summary

Summary

Control circuits are important parts of RF and microwave systems. Their compact size, high performance, and low cost have played a vital role in the development of cost effective solutions and new applications during the past quarter century. This book provides a comprehensive treatment of such circuits, including device operation and their models, basic circuit theory and designs, and applications. The unique features of this book include in-depth and comprehensive study of control circuits, extensive design equations and figures, treatment of practical aspect of circuits and description of fabrication technologies. It provides you with a broad view of solid state control circuits including various technologies and their comparison and up to date information.


Author Notes

Inder J. Bahl is an IEEE Fellow and a member of the Electromagnetic Academy. He is the editor of the International Journal of RF and Microwave Computer-Aided Engineering. He earned his Ph.D. in electrical, engineering and has over 40 years of experience working in the microwave field.


Table of Contents

Prefacep. xi
Chapter 1 Introductionp. 1
1.1 History of Control Componentsp. 1
1.2 Types of Control Componentsp. 2
1.3 Solid-State Switching Devicesp. 3
1.4 Design of Control Componentsp. 5
1.5 Fabrication of Control Componentsp. 9
1.6 Applicationsp. 12
1.7 Book Organizationp. 14
Referencesp. 15
Chapter 2 Control Devicesp. 19
2.1 PIN Diodesp. 19
2.1.1 Operation of PIN Diodesp. 19
2.1.2 PIN Diode Modelsp. 21
2.2 GaAs MESFETsp. 24
2.2.1 Operation of MESFETsp. 24
2.2.2 Linear Switch FET Modelsp. 26
2.2.3 Nonlinear Switch FET Modelsp. 33
2.3 GaAs HEMTsp. 36
2.4 GaAs HBTsp. 39
2.5 GaN HEMTsp. 39
2.6 CMOS Transistorsp. 40
2.6.1 Operation of CMOS Switchp. 40
2.6.2 Various Body Floating Techniquesp. 42
2.6.3 CMOS Transistor Modelsp. 44
2.7 Other Devicesp. 45
2.7.1 Schottky Diodesp. 46
2.7.2 Varactor Diodesp. 49
2.8 Transistor Model Scalingp. 49
2.9 Biasing of Switching Devicesp. 50
2.9.1 Biasing of PIN Diodesp. 50
2.9.2 Biasing of Transistorsp. 58
2.10 Switching Speedp. 59
2.10.1 Switching Speed of PIN Diodesp. 59
2.10.2 Switching Speed of Transistorsp. 61
2.11 Comparison of Switching Devicesp. 62
Referencesp. 62
Chapter 3 Switchesp. 67
3.1 Introductionp. 67
3.1.1 Switch Parametersp. 67
3.1.2 Devices for Switchesp. 69
3.1.3 Basic Requirements of a Switch for Wireless Applicationsp. 69
3.2 Design of Switchesp. 70
3.2.1 Types of Switchesp. 70
3.2.2 Switch. Configurationsp. 72
3.2.3 Basic Theory of Switchesp. 75
3.3 Multiport Switchesp. 78
3.3.1 Multithrow Switchesp. 78
3.3.2 Matrix Switchesp. 79
3.3.3 Diversity Switchp. 79
3.4 High Isolation Switchesp. 81
3.5 Broadband Switchesp. 84
3.6 High-Power Switchesp. 86
3.6.1 Impedance Transformation Techniquep. 88
3.6.2 Stacked FETs Methodp. 90
3.6.3 Resonant Circuit Techniquep. 91
3.6.4 GaN HEMT Switchesp. 92
3.6.5 Power Handling of PIN Diode Switchesp. 93
3.7 Low Distortion Switchesp. 94
3.8 Performance of Switch Circuitsp. 96
3.8.1 PIN Diode Switch Circuitsp. 96
3.8.2 MESFET Switch Circuitsp. 99
3.8.3 HEMT Switch Circuitsp. 101
3.8.4 CMOS Switch Circuitsp. 107
3.8.5 Comparison of Switch Technologiesp. 109
3.9 Novel Switch Configurationsp. 110
3.9.1 Filter-Integrated Switchp. 110
3.9.2 Redundant Switchp. 111
3.9.3 Switched Variable Power Amplifierp. 111
3.9.4 Switches with Integrated Controlp. 113
3.10 Intermodulation Analysis of Switchesp. 113
3.10.1 PIN Diode Switchesp. 114
3.10.2 MESFET Switchesp. 114
Referencesp. 115
Chapter 4 Phase Shiftersp. 123
4.1 Types of Phase Shiftersp. 123
4.1.1 Digital Phase Shiftersp. 123
4.1.2 Analog Phase Shiftersp. 126
4.1.3 Active Phase Shiftersp. 127
4.2 Theory of Phase Shiftersp. 127
4.2.1 Reflection-Type Phase Shifterp. 127
4.2.2 Switched-Line Phase Shifterp. 133
4.2.3 Loaded-Line Phase Shiftersp. 136
4.2.4 Switched-Network Phase Shiftersp. 142
4.2.5 Embedded-Device Phase Shiftersp. 152
4.3 Multibit Phase Shifter Circuitsp. 155
4.3.1 RMS Errorsp. 155
4.3.2 PIN Diode Phase Shiftersp. 156
4.3.3 MESFET/HEMT Phase Shiftersp. 157
4.3.4 CMOS Phase. Shiftersp. 163
4.4 Analog Phase Shiftersp. 165
4.4.1 Voltage-Controlled Reflection-Type Phase Shiftersp. 165
4.4.2 Voltage-Controlled Transmission-Type Phase Shiftersp. 166
4.4.3 Analog Varactor Diode Phase Shiftersp. 169
4.4.4 Analog CMOS Phase Shiftersp. 170
4.5 Broadband Phase Shiftersp. 171
4.5.1 GaAs MESFET/HEMT Broadband Phase Shiftersp. 173
4.5.2 Broadband CMOS Phase Shiftersp. 179
4.6 Ultrawideband Phase Shiftersp. 180
4.7 Millimeter-Wave Phase Shiftersp. 185
4.7.1 PIN/Schottky Diode Millimeter-Wave Phase Shiftersp. 185
4.7.2 MESFET/HEMT Millimeter-Wave Phase Shiftersp. 185
4.7.3 CMOS Millimeter-Wave Phase Shiftersp. 189
4.8 Active Phase Shiftersp. 190
4.8.1 Dual-Gate FET Phase Shiftersp. 191
4.8.2 Switchable-Amplifier Phase Shiftersp. 192
4.8.3 Vector Modulator Phase Shiftersp. 192
Referencesp. 197
Chapter 5 Attenuatorsp. 207
5.1 Introductionp. 207
5.1.1 Types of Attenuatorsp. 207
5.1.2 Theory of Attenuatorsp. 210
5.1.3 Fabrication of Attenuatorsp. 214
5.2 Fixed Value Attenuatorsp. 214
5.2.1 Attenuator Padp. 214
5.2.2 Temperature Variable Attenuatorp. 215
5.3 Multibit Attenuatorsp. 216
5.3.1 PIN Diode Step Attenuatorsp. 217
5.3.2 GaAs MMIC Step Attenuatorsp. 218
5.3.3 Si CMOS Step Attenuatorsp. 220
5.4 Variable Voltage Attenuatorsp. 222
5.4.1 PIN Diode Variable Attenuatorsp. 223
5.4.2 MESFET Variable Attenuatorsp. 224
5.4.3 CMOS Variable Attenuatorp. 227
5.4.4 GaN HEMT Attenuatorp. 228
5.4.5 Linear Voltage Variable Attenuatorsp. 229
5.6 Other Attenuator Circuitsp. 236
5.6.1 Reflection-Type Attenuatorsp. 236
5.6.2 Balanced Attenuatorsp. 240
5.6.3 Frequency Dependent Attenuatorsp. 242
5.6.4 Phase Compensated Attenuatorsp. 244
5.6.5 CMOS Attenuator with Integrated Switchp. 245
5.7 Distortion in Attenuatorsp. 245
5.7.1 PIN Diode Attenuatorsp. 246
5.7.2 FET Attenuatorsp. 247
Referencesp. 248
Chapter 6 Limitersp. 253
6.1 Introductionp. 253
6.1.1 Limiter Characterizationp. 254
6.1.2 Limiter Typesp. 255
6.2 PIN Diode Limitersp. 259
6.2.1 Analysis of PIN Diode Limiterp. 259
6.2.2 Si PIN Diode Limiters in Microstrip Configurationp. 263
6.2.3 GaAs PIN Diode Limitersp. 265
6.2.4 Matched Limitersp. 267
6.3 Schottky Diode Limitersp. 269
6.3.1 Analysis of Schottky Diode Limiterp. 271
6.3.2 Schottky Diode Design and Limiter Configurationp. 273
6.3.3 Broadband High Power Limitersp. 274
6.4 Monolithic GaAs Schottky Diode Limiter Circuitsp. 275
6.4.1 Limiting Amplifiersp. 276
6.4.2 10-W Limiter with Embedded LNAp. 278
6.5 Other Diode Limitersp. 282
6.5.1 BiCMOS Diode Limiterp. 282
6.5.2 GaN Schottky Diode Limitersp. 283
Referencesp. 283
Appendix A Physical Constants and Frequency Band Designationsp. 287
Appendix B Thermal Design of Devicesp. 289
B.1 Thermal Basicsp. 289
B.2 Transistor Thermal Designp. 291
B.2.1 Cooke Model for Single-Gate Devicesp. 291
B.2.2 Cook Model for Multiple-Gate Devicesp. 292
B.2.3 Pulsed Operationp. 294
B.2.4 Component Assembly Thermal Design Considerationsp. 295
Referencesp. 296
Indexp. 297
About the Authorp. 299