Skip to:Content
|
Bottom
Cover image for Engineering optimization : methods and applications
Title:
Engineering optimization : methods and applications
Personal Author:
Edition:
2nd ed.
Publication Information:
Hoboken, NJ : John Wiley & Sons, 2006
ISBN:
9780471558149

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010116778 TA342 R44 2006 Open Access Book Book
Searching...

On Order

Summary

Summary

The classic introduction to engineering optimization theory and practice--now expanded and updated


Engineering optimization helps engineers zero in on the most effective, efficient solutions to problems. This text provides a practical, real-world understanding of engineering optimization. Rather than belaboring underlying proofs and mathematical derivations, it emphasizes optimization methodology, focusing on techniques and stratagems relevant to engineering applications in design, operations, and analysis. It surveys diverse optimization methods, ranging from those applicable to the minimization of a single-variable function to those most suitable for large-scale, nonlinear constrained problems. New material covered includes the duality theory, interior point methods for solving LP problems, the generalized Lagrange multiplier method and generalization of convex functions, and goal programming for solving multi-objective optimization problems. A practical, hands-on reference and text, Engineering Optimization, Second Edition covers:
* Practical issues, such as model formulation, implementation, starting point generation, and more
* Current, state-of-the-art optimization software
* Three engineering case studies plus numerous examples from chemical, industrial, and mechanical engineering
* Both classical methods and new techniques, such as successive quadratic programming, interior point methods, and goal programming

Excellent for self-study and as a reference for engineering professionals, this Second Edition is also ideal for senior and graduate courses on engineering optimization, including television and online instruction, as well as for in-plant training.


Author Notes

A. Ravindran, PhD, is Professor of Industrial and Manufacturing Engineering at Penn State University in University Park, Pennsylvania
K. M. Ragsdell, PhD, is Professor of Engineering Management at the University of Missouri in Rolla, Missouri
G. V. Reklaitis, PhD, is Edward W. Comings Professor of Chemical Engineering at Purdue University in West Lafayette, Indiana


Table of Contents

Prefacep. xiii
1 Introduction to Optimizationp. 1
1.1 Requirements for the Application of Optimization Methodsp. 2
1.1.1 Defining the System Boundariesp. 2
1.1.2 Performance Criterionp. 3
1.1.3 Independent Variablesp. 4
1.1.4 System Modelp. 5
1.2 Applications of Optimization in Engineeringp. 6
1.2.1 Design Applicationsp. 8
1.2.2 Operations and Planning Applicationsp. 15
1.2.3 Analysis and Data Reduction Applicationsp. 20
1.2.4 Classical Mechanics Applicationsp. 26
1.2.5 Taguchi System of Quality Engineeringp. 27
1.3 Structure of Optimization Problemsp. 28
1.4 Scope of This Bookp. 29
Referencesp. 30
2 Functions of a Single Variablep. 32
2.1 Properties of Single-Variable Functionsp. 32
2.2 Optimality Criteriap. 35
2.3 Region Elimination Methodsp. 45
2.3.1 Bounding Phasep. 46
2.3.2 Interval Refinement Phasep. 48
2.3.3 Comparison of Region Elimination Methodsp. 53
2.4 Polynomial Approximation or Point Estimation Methodsp. 55
2.4.1 Quadratic Estimation Methodsp. 56
2.4.2 Successive Quadratic Estimation Methodp. 58
2.5 Methods Requiring Derivativesp. 61
2.5.1 Newton-Raphson Methodp. 61
2.5.2 Bisection Methodp. 63
2.5.3 Secant Methodp. 64
2.5.4 Cubic Search Methodp. 65
2.6 Comparison of Methodsp. 69
2.7 Summaryp. 70
Referencesp. 71
Problemsp. 71
3 Functions of Several Variablesp. 78
3.1 Optimality Criteriap. 80
3.2 Direct-Search Methodsp. 84
3.2.1 The S[superscript 2] (Simplex Search) Methodp. 86
3.2.2 Hooke-Jeeves Pattern Search Methodp. 92
3.2.3 Powell's Conjugate Direction Methodp. 97
3.3 Gradient-Based Methodsp. 108
3.3.1 Cauchy's Methodp. 109
3.3.2 Newton's Methodp. 111
3.3.3 Modified Newton's Methodp. 115
3.3.4 Marquardt's Methodp. 116
3.3.5 Conjugate Gradient Methodsp. 117
3.3.6 Quasi-Newton Methodsp. 123
3.3.7 Trust Regionsp. 127
3.3.8 Gradient-Based Algorithmp. 128
3.3.9 Numerical Gradient Approximationsp. 129
3.4 Comparison of Methods and Numerical Resultsp. 130
3.5 Summaryp. 137
Referencesp. 137
Problemsp. 141
4 Linear Programmingp. 149
4.1 Formulation of Linear Programming Modelsp. 149
4.2 Graphical Solution of Linear Programs in Two Variablesp. 154
4.3 Linear Program in Standard Formp. 158
4.3.1 Handling Inequalitiesp. 159
4.3.2 Handling Unrestricted Variablesp. 159
4.4 Principles of the Simplex Methodp. 161
4.4.1 Minimization Problemsp. 172
4.4.2 Unbounded Optimump. 173
4.4.3 Degeneracy and Cyclingp. 174
4.4.4 Use of Artificial Variablesp. 174
4.4.5 Two-Phase Simplex Methodp. 176
4.5 Computer Solution of Linear Programsp. 177
4.5.1 Computer Codesp. 177
4.5.2 Computational Efficiency of the Simplex Methodp. 179
4.6 Sensitivity Analysis in Linear Programmingp. 180
4.7 Applicationsp. 183
4.8 Additional Topics in Linear Programmingp. 183
4.8.1 Duality Theoryp. 184
4.8.2 Dual Simplex Methodp. 188
4.8.3 Interior Point Methodsp. 189
4.8.4 Integer Programmingp. 205
4.8.5 Goal Programmingp. 205
4.9 Summaryp. 206
Referencesp. 206
Problemsp. 207
5 Constrained Optimality Criteriap. 218
5.1 Equality-Constrained Problemsp. 218
5.2 Lagrange Multipliersp. 219
5.3 Economic Interpretation of Lagrange Multipliersp. 224
5.4 Kuhn-Tucker Conditionsp. 225
5.4.1 Kuhn-Tucker Conditions or Kuhn-Tucker Problemp. 226
5.4.2 Interpretation of Kuhn-Tucker Conditionsp. 228
5.5 Kuhn-Tucker Theoremsp. 229
5.6 Saddlepoint Conditionsp. 235
5.7 Second-Order Optimality Conditionsp. 238
5.8 Generalized Lagrange Multiplier Methodp. 245
5.9 Generalization of Convex Functionsp. 249
5.10 Summaryp. 254
Referencesp. 254
Problemsp. 255
6 Transformation Methodsp. 260
6.1 Penalty Conceptp. 261
6.1.1 Various Penalty Termsp. 262
6.1.2 Choice of Penalty Parameter Rp. 277
6.2 Algorithms, Codes, and Other Contributionsp. 279
6.3 Method of Multipliersp. 282
6.3.1 Penalty Functionp. 283
6.3.2 Multiplier Update Rulep. 283
6.3.3 Penalty Function Topologyp. 284
6.3.4 Termination of the Methodp. 285
6.3.5 MOM Characteristicsp. 286
6.3.6 Choice of R-Problem Scalep. 289
6.3.7 Variable Boundsp. 289
6.3.8 Other MOM-Type Codesp. 293
6.4 Summaryp. 293
Referencesp. 294
Problemsp. 298
7 Constrained Direct Searchp. 305
7.1 Problem Preparationp. 306
7.1.1 Treatment of Equality Constraintsp. 306
7.1.2 Generation of Feasible Starting Pointsp. 309
7.2 Adaptations of Unconstrained Search Methodsp. 309
7.2.1 Difficulties in Accommodating Constraintsp. 310
7.2.2 Complex Methodp. 312
7.2.3 Discussionp. 320
7.3 Random-Search Methodsp. 322
7.3.1 Direct Sampling Proceduresp. 322
7.3.2 Combined Heuristic Proceduresp. 326
7.3.3 Discussionp. 329
7.4 Summaryp. 330
Referencesp. 330
Problemsp. 332
8 Linearization Methods for Constrained Problemsp. 336
8.1 Direct Use of Successive Linear Programsp. 337
8.1.1 Linearly Constrained Casep. 337
8.1.2 General Nonlinear Programming Casep. 346
8.1.3 Discussion and Applicationsp. 355
8.2 Separable Programmingp. 359
8.2.1 Single-Variable Functionsp. 359
8.2.2 Multivariable Separable Functionsp. 362
8.2.3 Linear Programming Solutions of Separable Problemsp. 364
8.2.4 Discussion and Applicationsp. 368
8.3 Summaryp. 372
Referencesp. 373
Problemsp. 374
9 Direction Generation Methods Based on Linearizationp. 378
9.1 Method of Feasible Directionsp. 378
9.1.1 Basic Algorithmp. 380
9.1.2 Active Constraint Sets and Jammingp. 383
9.1.3 Discussionp. 387
9.2 Simplex Extensions for Linearly Constrained Problemsp. 388
9.2.1 Convex Simplex Methodp. 389
9.2.2 Reduced Gradient Methodp. 399
9.2.3 Convergence Accelerationp. 403
9.3 Generalized Reduced Gradient Methodp. 406
9.3.1 Implicit Variable Eliminationp. 406
9.3.2 Basic GRG Algorithmp. 410
9.3.3 Extensions of Basic Methodp. 419
9.3.4 Computational Considerationsp. 427
9.4 Design Applicationp. 432
9.4.1 Problem Statementp. 433
9.4.2 General Formulationp. 434
9.4.3 Model Reduction and Solutionp. 437
9.5 Summaryp. 441
Referencesp. 441
Problemsp. 443
10 Quadratic Approximation Methods for Constrained Problemsp. 450
10.1 Direct Quadratic Approximationp. 451
10.2 Quadratic Approximation of the Lagrangian Functionp. 456
10.3 Variable Metric Methods for Constrained Optimizationp. 464
10.4 Discussionp. 470
10.4.1 Problem Scalingp. 470
10.4.2 Constraint Inconsistencyp. 470
10.4.3 Modification of H[superscript (t)]p. 471
10.4.4 Comparison of GRG with CVMp. 471
10.5 Summaryp. 475
Referencesp. 476
Problemsp. 477
11 Structured Problems and Algorithmsp. 481
11.1 Integer Programmingp. 481
11.1.1 Formulation of Integer Programming Modelsp. 482
11.1.2 Solution of Integer Programming Problemsp. 484
11.1.3 Guidelines on Problem Formulation and Solutionp. 492
11.2 Quadratic Programmingp. 494
11.2.1 Applications of Quadratic Programmingp. 494
11.2.2 Kuhn-Tucker Conditionsp. 498
11.3 Complementary Pivot Problemsp. 499
11.4 Goal Programmingp. 507
11.5 Summaryp. 518
Referencesp. 518
Problemsp. 521
12 Comparison of Constrained Optimization Methodsp. 530
12.1 Software Availabilityp. 530
12.2 A Comparison Philosophyp. 531
12.3 Brief History of Classical Comparative Experimentsp. 533
12.3.1 Preliminary and Final Resultsp. 535
12.4 Summaryp. 539
Referencesp. 539
13 Strategies for Optimization Studiesp. 542
13.1 Model Formulationp. 543
13.1.1 Levels of Modelingp. 544
13.1.2 Types of Modelsp. 548
13.2 Problem Implementationp. 552
13.2.1 Model Assemblyp. 553
13.2.2 Preparation for Solutionp. 554
13.2.3 Execution Strategiesp. 580
13.3 Solution Evaluationp. 588
13.3.1 Solution Validationp. 589
13.3.2 Sensitivity Analysisp. 590
13.4 Summaryp. 594
Referencesp. 594
Problemsp. 597
14 Engineering Case Studiesp. 603
14.1 Optimal Location of Coal-Blending Plants by Mixed-Integer Programmingp. 603
14.1.1 Problem Descriptionp. 604
14.1.2 Model Formulationp. 604
14.1.3 Resultsp. 609
14.2 Optimization of an Ethylene Glycol-Ethylene Oxide Processp. 610
14.2.1 Problem Descriptionp. 610
14.2.2 Model Formulationp. 612
14.2.3 Problem Preparationp. 618
14.2.4 Discussion of Optimization Runsp. 618
14.3 Optimal Design of a Compressed Air Energy Storage Systemp. 621
14.3.1 Problem Descriptionp. 621
14.3.2 Model Formulationp. 622
14.3.3 Numerical Resultsp. 627
14.3.4 Discussionp. 629
14.4 Summaryp. 630
Referencesp. 631
Appendix A Review of Linear Algebrap. 633
A.1 Set Theoryp. 633
A.2 Vectorsp. 633
A.3 Matricesp. 634
A.3.1 Matrix Operationsp. 635
A.3.2 Determinant of a Square Matrixp. 637
A.3.3 Inverse of a Matrixp. 637
A.3.4 Condition of a Matrixp. 639
A.3.5 Sparse Matrixp. 639
A.4 Quadratic Formsp. 640
A.4.1 Principal Minorp. 641
A.4.2 Completing the Squarep. 642
A.5 Convex Setsp. 646
Appendix B Convex and Concave Functionsp. 648
Appendix C Gauss-Jordan Elimination Schemep. 651
Author Indexp. 653
Subject Indexp. 659
Go to:Top of Page