Cover image for Introduction to 3+1 numerical relativity
Title:
Introduction to 3+1 numerical relativity
Personal Author:
Series:
International series of monographs on physics ; 140
Publication Information:
Oxford ; New York : Oxford University Press, 2008
Physical Description:
xiv, 444 p. : ill. ; 25 cm.
ISBN:
9780199205677

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010283603 QC173.55 A43 2008 Open Access Book Book
Searching...
Searching...
33000000017403 QC173.55 A43 2008 Open Access Book Book
Searching...

On Order

Summary

Summary

This book is a self-contained introduction to the field of numerical relativity, aimed at graduate students and researchers in physics and astrophysics. Starting from basic general relativity, it introduces all the concepts and tools necessary for the fully relativistic simulation of astrophysical systems with strong and dynamical gravitational fields.


Author Notes

Professor Miguel AlcubierreDepartment of Gravitation and Mathematical PhysicsInstitute of Nuclear ScienceUniversidad Nacional Autonoma de Mexico


Table of Contents

1 Brief review of general relativityp. 1
1.1 Introductionp. 1
1.2 Notation and conventionsp. 2
1.3 Special relativityp. 2
1.4 Manifolds and tensorsp. 7
1.5 The metric tensorp. 10
1.6 Lie derivatives and Killing fieldsp. 14
1.7 Coordinate transformationsp. 17
1.8 Covariant derivatives and geodesicsp. 20
1.9 Curvaturep. 25
1.10 Bianchi identities and the Einstein tensorp. 28
1.11 General relativityp. 28
1.12 Matter and the stress-energy tensorp. 32
1.13 The Einstein field equationsp. 36
1.14 Weak fields and gravitational wavesp. 39
1.15 The Schwarzschild solution and black holesp. 46
1.16 Black holes with charge and angular momentump. 53
1.17 Causal structure, singularities and black holesp. 57
2 The 3+1 formalismp. 64
2.1 Introductionp. 64
2.2 3+1 split of spacetimep. 65
2.3 Extrinsic curvaturep. 68
2.4 The Einstein constraintsp. 71
2.5 The ADM evolution equationsp. 73
2.6 Free versus constrained evolutionp. 77
2.7 Hamiltonian formulationp. 78
2.8 The BSSNOK formulationp. 81
2.9 Alternative formalismsp. 87
2.9.1 The characteristic approachp. 87
2.9.2 The conformal approachp. 90
3 Initial datap. 92
3.1 Introductionp. 92
3.2 York-Lichnerowicz conformal decompositionp. 92
3.2.1 Conformal transverse decompositionp. 94
3.2.2 Physical transverse decompositionp. 97
3.2.3 Weighted transverse decompositionp. 99
3.3 Conformal thin-sandwich approachp. 101
3.4 Multiple black hole initial datap. 105
3.4.1 Time-symmetric datap. 105
3.4.2 Bowen-York extrinsic curvaturep. 109
3.4.3 Conformal factor: inversions and puncturesp. 111
3.4.4 Kerr-Schild type datap. 113
3.5 Binary black holes in quasi-circular orbitsp. 115
3.5.1 Effective potential methodp. 116
3.5.2 The quasi-equilibrium methodp. 117
4 Gauge conditionsp. 121
4.1 Introductionp. 121
4.2 Slicing conditionsp. 122
4.2.1 Geodesic slicing and focusingp. 123
4.2.2 Maximal slicingp. 123
4.2.3 Maximal slices of Schwarzschildp. 127
4.2.4 Hyperbolic slicing conditionsp. 133
4.2.5 Singularity avoidance for hyperbolic slicingsp. 136
4.3 Shift conditionsp. 140
4.3.1 Elliptic shift conditionsp. 141
4.3.2 Evolution type shift conditionsp. 145
4.3.3 Corotating coordinatesp. 151
5 Hyperbolic reductions of the field equationsp. 155
5.1 Introductionp. 155
5.2 Well-posednessp. 156
5.3 The concept of hyperbolicityp. 158
5.4 Hyperbolicity of the ADM equationsp. 164
5.5 The Bona-Masso and NOR formulationsp. 169
5.6 Hyperbolicity of BSSNOKp. 175
5.7 The Kidder-Scheel-Teukolsky familyp. 179
5.8 Other hyperbolic formulationsp. 183
5.8.1 Higher derivative formulationsp. 184
5.8.2 The Z4 formulationp. 185
5.9 Boundary conditionsp. 187
5.9.1 Radiative boundary conditionsp. 188
5.9.2 Maximally dissipative boundary conditionsp. 191
5.9.3 Constraint preserving boundary conditionsp. 194
6 Evolving black hole spacetimesp. 198
6.1 Introductionp. 198
6.2 Isometries and throat adapted coordinatesp. 199
6.3 Static puncture evolutionp. 206
6.4 Singularity avoidance and slice stretchingp. 209
6.5 Black hole excisionp. 214
6.6 Moving puncturesp. 217
6.6.1 How to move the puncturesp. 217
6.6.2 Why does evolving the punctures work?p. 219
6.7 Apparent horizonsp. 221
6.7.1 Apparent horizons in spherical symmetryp. 223
6.7.2 Apparent horizons in axial symmetryp. 224
6.7.3 Apparent horizons in three dimensionsp. 226
6.8 Event horizonsp. 230
6.9 Isolated and dynamical horizonsp. 234
7 Relativistic hydrodynamicsp. 238
7.1 Introductionp. 238
7.2 Special relativistic hydrodynamicsp. 239
7.3 General relativistic hydrodynamicsp. 245
7.4 3+1 form of the hydrodynamic equationsp. 249
7.5 Equations of state: dust, ideal gases and polytropesp. 252
7.6 Hyperbolicity and the speed of soundp. 257
7.6.1 Newtonian casep. 257
7.6.2 Relativistic casep. 260
7.7 Weak solutions and the Riemann problemp. 264
7.8 Imperfect fluids: viscosity and heat conductionp. 270
7.8.1 Eckart's irreversible thermodynamicsp. 270
7.8.2 Causal irreversible thermodynamicsp. 273
8 Gravitational wave extractionp. 276
8.1 Introductionp. 276
8.2 Gauge invariant perturbations of Schwarzschildp. 277
8.2.1 Multipole expansionp. 277
8.2.2 Even parity perturbationsp. 280
8.2.3 Odd parity perturbationsp. 283
8.2.4 Gravitational radiation in the TT gaugep. 284
8.3 The Weyl tensorp. 288
8.4 The tetrad formalismp. 291
8.5 The Newman-Penrose formalismp. 294
8.5.1 Null tetradsp. 294
8.5.2 Tetrad transformationsp. 297
8.6 The Weyl scalarsp. 298
8.7 The Petrov classificationp. 299
8.8 Invariants I and Jp. 303
8.9 Energy and momentum of gravitational wavesp. 304
8.9.1 The stress-energy tensor for gravitational wavesp. 304
8.9.2 Radiated energy and momentump. 307
8.9.3 Multipole decompositionp. 313
9 Numerical methodsp. 318
9.1 Introductionp. 318
9.2 Basic concepts of finite differencingp. 318
9.3 The one-dimensional wave equationp. 322
9.3.1 Explicit finite difference approximationp. 323
9.3.2 Implicit approximationp. 325
9.4 Von Newmann stability analysisp. 326
9.5 Dissipation and dispersionp. 329
9.6 Boundary conditionsp. 332
9.7 Numerical methods for first order systemsp. 335
9.8 Method of linesp. 339
9.9 Artificial dissipation and viscosityp. 343
9.10 High resolution schemesp. 347
9.10.1 Conservative methodsp. 347
9.10.2 Godunov's methodp. 348
9.10.3 High resolution methodsp. 350
9.11 Convergence testingp. 353
10 Examples of numerical spacetimesp. 357
10.1 Introductionp. 357
10.2 Toy 1+1 relativityp. 357
10.2.1 Gauge shocksp. 359
10.2.2 Approximate shock avoidancep. 362
10.2.3 Numerical examplesp. 364
10.3 Spherical symmetryp. 369
10.3.1 Regularizationp. 370
10.3.2 Hyperbolicityp. 374
10.3.3 Evolving Schwarzschildp. 378
10.3.4 Scalar field collapsep. 383
10.4 Axial symmetryp. 391
10.4.1 Evolution equations and regularizationp. 391
10.4.2 Brill wavesp. 395
10.4.3 The "Cartoon" approachp. 399
A Total mass and momentum in general relativityp. 402
B Spacetime Christoffel symbols in 3+1 languagep. 409
C BSSNOK with natural conformal rescalingp. 410
D Spin-weighted spherical harmonicsp. 413
Referencesp. 419
Indexp. 437