Skip to:Content
|
Bottom
Cover image for Advanced dynamics : rigid body, multibody, and aerospace applications
Title:
Advanced dynamics : rigid body, multibody, and aerospace applications
Personal Author:
Publication Information:
Hoboken, N.J. : Wiley, c2011
Physical Description:
xviii, 1324 p. : ill. ; 25 cm.
ISBN:
9780470398357
Abstract:
"According to the author and reviewers, more than 50% of the material taught in courses such as Advanced Dynamics, Mutibody Dynamics, and Spacecraft Dynamics is common to one another. Where graduate students in Mechanical and Aerospace Engineering may have the potential to work on projects that are related to any of the engineering disciplines, they have not been exposed to enough applications in both areas for them to use this information in the real world. This book bridges the gap between rigid body, multibody, and spacecraft dynamics for graduate students and specialists in mechanical and aerospace engineering. The engineers and graduate students who read this book will be able to apply their knowledge to a wide range of applications across different engineering disciplines. The book begins with a review on coordinate systems and particle dynamics which will teach coordinate frames. The transformation and rotation theory along with the differentiation theory in different coordinate frames will provides the required background to learn the rigid body dynamics based on Newton-Euler principles. Applications to this coverage can be found in vehicle dynamics, spacecraft dynamics, aircraft dynamics, robot dynamics, and multibody dynamics, each in a chapter. The Newton equations of motion will be transformed to Lagrange equation as a bridge to analytical dynamics. The methods of Lagrange and Hamilton will be applied on rigid body dynamics. Finally through the coverage of special applications this text provides understanding of advanced systems without restricting itself to a particular discipline. The author will provide a detailed solutions manual and powerpoint slides as ancillaries to this book"-- Provided by publisher.
Subject Term:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010278987 TA352 J39 2011 Open Access Book Book
Searching...

On Order

Summary

Summary

A thorough understanding of rigid body dynamics as it relates to modern mechanical and aerospace systems requires engineers to be well versed in a variety of disciplines. This book offers an all-encompassing view by interconnecting a multitude of key areas in the study of rigid body dynamics, including classical mechanics, spacecraft dynamics, and multibody dynamics. In a clear, straightforward style ideal for learners at any level, Advanced Dynamics builds a solid fundamental base by first providing an in-depth review of kinematics and basic dynamics before ultimately moving forward to tackle advanced subject areas such as rigid body and Lagrangian dynamics. In addition, Advanced Dynamics:

Is the only book that bridges the gap between rigid body, multibody, and spacecraft dynamics for graduate students and specialists in mechanical and aerospace engineering Contains coverage of special applications that highlight the different aspects of dynamics and enhances understanding of advanced systems across all related disciplines Presents material using the author's own theory of differentiation in different coordinate frames, which allows for better understanding and application by students and professionals

Both a refresher and a professional resource, Advanced Dynamics leads readers on a rewarding educational journey that will allow them to expand the scope of their engineering acumen as they apply a wide range of applications across many different engineering disciplines.


Author Notes

Reza N. Jazar is a professor of mechanical engineering, receiving his master's degree from Tehran Polytechnic in 1990, specializing in robotics. In 1997, he acquired his PhD from Sharif Institute of Technology in nonlinear dynamics and applied mathematics. Prof. Jazar is a specialist in classical and nonlinear dynamics, and has extensive experience in the field of dynamics and mathematical modeling. Prof. Jazar has worked in numerous universities worldwide, and through his years of work experience, he has formulated many theorems, innovative ideas, and discoveries in classical dynamics, robotics, control, and nonlinear vibrations. Razi Acceleration, Theory of Time Derivative, Order-Free Transformations, Caster Theory, Autodriver Algorithm, Floating-Time Method, Energy-Rate Method, and RMS Optimization Method are some of his discoveries and innovative ideas. Some of his recent discoveries in kinematics dynamics were introduced in Advanced Dynamics for the first time. Prof. Jazar has written over 200 scientific papers and technical reports and has authored more than thirty books including Theory of Applied Robotics: Kinematics, Dynamics, and Control , Second Edition and Vehicle Dynamics: Theory and Application .


Go to:Top of Page