Skip to:Content
|
Bottom
Cover image for Broadband packet switching technologies : a practical guide to ATM switches and IP routers
Title:
Broadband packet switching technologies : a practical guide to ATM switches and IP routers
Personal Author:
Publication Information:
New York : John Wiley & Sons, 2001
ISBN:
9780471004547

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010047166 TK5105.35 C524 2001 Open Access Book Book
Searching...

On Order

Summary

Summary

The effective design of high-speed, reliable switching systems is essential for moving the huge volumes of traffic and multimedia over modern communications networks. This book explains all the main packet-switching architectures, including all theoretical and practical topics relevant to the design and management of high-speed networks. Delivering the most systematic coverage available of the subject, the authors interweave fundamental concepts with real-world applications and include engineering case studies from wireless and fiber-optic communications.
Market: Hardware and Software Engineers in the telecommunication industry, System Engineers, and Technicians.


Author Notes

H. JONATHAN CHAO, PhD, earned his doctorate at The Ohio State University. Since 1992 he has been Professor of Electrical Engineering at Polytechnic University, Brooklyn, New York and conducts research in terabit ATM switches and IP routers, quality of service control, and photonic packet switching. He was co-founder and Chief Technical Officer of Coree Networks Inc., building a terabit IP/MPLS switch router. Between 1985 and 1992 he was a member of technical staff at Telcordia in New Jersey. He is a Fellow of the IEEE and has published widely in the above subjects.
CHEUK H. LAM, PhD, earned his doctorate at the Chinese University of Hong Kong. He is a member of the technical staff at Lucent Technologies Inc., Landover, Maryland.
EIJI OKI, PhD, earned his doctorate at Keio University, Yokohama, Japan. He is a research engineer at NTT Network Service Systems Laboratories, Tokyo. In 2000 he was a visiting scholar at Polytechnic University.


Table of Contents

Prefacep. xiii
1 Introductionp. 1
1.1 ATM Switch Systemsp. 3
1.1.1 Basics of ATM networksp. 3
1.1.2 ATM switch structurep. 5
1.2 IP Router Systemsp. 8
1.2.1 Functions of IP routersp. 8
1.2.2 Architectures of IP routersp. 9
1.3 Design Criteria and Performance Requirementsp. 13
Referencesp. 14
2 Basics of Packet Switchingp. 15
2.1 Switching Conceptsp. 17
2.1.1 Internal link blockingp. 17
2.1.2 Output port contentionp. 18
2.1.3 Head-of-line blockingp. 19
2.1.4 Multicastingp. 19
2.1.5 Call splittingp. 20
2.2 Switch Architecture Classificationp. 21
2.2.1 Time division switchingp. 22
2.2.2 Space division switchingp. 24
2.2.3 Buffering strategiesp. 34
2.3 Performance of Basic Switchesp. 37
2.3.1 Input-buffered switchesp. 37
2.3.2 Output-buffered switchesp. 40
2.3.3 Completely shared-buffer switchesp. 44
Referencesp. 46
3 Input-Buffered Switchesp. 49
3.1 A Simple Switch Modelp. 50
3.1.1 Head-of-line blocking phenomenonp. 51
3.1.2 Traffic models and related throughput resultsp. 52
3.2 Methods for Improving Performancep. 53
3.2.1 Increasing internal capacityp. 53
3.2.2 Increasing scheduling efficiencyp. 54
3.3 Scheduling Algorithmsp. 57
3.3.1 Parallel iterative matching (PIM)p. 58
3.3.2 Iterative round-robin matching (iRRM)p. 60
3.3.3 Iterative round-robin with SLIP (iSLIP)p. 60
3.3.4 Dual round-robin matching (DRRM)p. 62
3.3.5 Round-robin greedy schedulingp. 65
3.3.6 Design of round-robin arbiters/selectorsp. 67
3.4 Output-Queuing Emulationp. 72
3.4.1 Most-Urgent-Cell-First-Algorithm (MUCFA)p. 72
3.4.2 Chuang et al.'s resultsp. 73
3.5 Lowest-Output-Occupancy-Cell-First Algorithm (LOOFA)p. 78
Referencesp. 80
4 Shared-Memory Switchesp. 83
4.1 Linked-List Approachp. 84
4.2 Content-Addressable Memory Approachp. 91
4.3 Space--Time--Space Approachp. 93
4.4 Multistage Shared-Memory Switchesp. 94
4.4.1 Washington University gigabit switchp. 95
4.4.2 Concentrator-based growable switch architecturep. 96
4.5 Multicast Shared-Memory Switchesp. 97
4.5.1 Shared-memory switch with a multicast logical queuep. 97
4.5.2 Shared-memory switch with cell copyp. 98
4.5.3 Shared-memory switch with address copyp. 99
Referencesp. 101
5 Banyan-Based Switchesp. 103
5.1 Banyan Networksp. 103
5.2 Batcher-Sorting Networkp. 106
5.3 Output Contention Resolution Algorithmsp. 110
5.3.1 Three-phase implementationp. 110
5.3.2 Ring reservationp. 110
5.4 The Sunshine Switchp. 112
5.5 Deflection Routingp. 114
5.5.1 Tandem banyan switchp. 114
5.5.2 Shuffle-exchange network with deflection routingp. 117
5.5.3 Dual shuffle-exchange network with error-correcting routingp. 118
5.6 Multicast Copy Networksp. 125
5.6.1 Broadcast banyan networkp. 127
5.6.2 Encoding processp. 129
5.6.3 Concentrationp. 132
5.6.4 Decoding processp. 133
5.6.5 Overflow and call splittingp. 133
5.6.6 Overflow and input fairnessp. 134
Referencesp. 138
6 Knockout-Based Switchesp. 141
6.1 Single-Stage Knockout Switchp. 142
6.1.1 Basic architecturep. 142
6.1.2 Knockout concentration principlep. 144
6.1.3 Construction of the concentratorp. 146
6.2 Channel Grouping Principlep. 150
6.2.1 Maximum throughputp. 150
6.2.2 Generalized knockout principlep. 152
6.3 A Two-Stage Multicast Output-Buffered ATM Switchp. 154
6.3.1 Two-stage configurationp. 154
6.3.2 Multicast grouping networkp. 157
6.3.3 Translation tablesp. 160
6.3.4 Multicast knockout principlep. 163
6.4 A Fault-Tolerant Multicast Output-Buffered ATM Switchp. 169
6.4.1 Fault model of switch elementp. 169
6.4.2 Fault detectionp. 172
6.4.3 Fault location and reconfigurationp. 174
6.4.4 Performance analysis of reconfigured switch modulep. 181
6.5 Appendixp. 185
Referencesp. 187
7 The Abacus Switchp. 189
7.1 Basic Architecturep. 190
7.2 Multicast Contention Resolution Algorithmp. 193
7.3 Implementation of Input Port Controllerp. 197
7.4 Performancep. 198
7.4.1 Maximum throughputp. 199
7.4.2 Average delayp. 203
7.4.3 Cell loss probabilityp. 206
7.5 ATM Routing and Concentration Chipp. 208
7.6 Enhanced Abacus Switchp. 211
7.6.1 Memoryless multistage concentration networkp. 212
7.6.2 Buffered multistage concentration networkp. 214
7.6.3 Resequencing cellsp. 217
7.6.4 Complexity comparisonp. 219
7.7 Abacus Switch for Packet Switchingp. 220
7.7.1 Packet interleavingp. 220
7.7.2 Cell interleavingp. 222
Referencesp. 224
8 Crosspoint-Buffered Switchesp. 227
8.1 Overview of Crosspoint-Buffered Switchesp. 228
8.2 Scalable Distributed Arbitration Switchp. 229
8.2.1 SDA structurep. 229
8.2.2 Performance of SDA switchp. 231
8.3 Multiple-QoS SDA Switchp. 234
8.3.1 MSDA structurep. 234
8.3.2 Performance of MSDA switchp. 236
Referencesp. 238
9 The Tandem-Crosspoint Switchp. 239
9.1 Overview of Input--Output-Buffered Switchesp. 239
9.2 TDXP Structurep. 241
9.2.1 Basic architecturep. 241
9.2.2 Unicasting operationp. 242
9.2.3 Multicasting operationp. 246
9.3 Performance of TDXP Switchp. 246
Referencesp. 252
10 Clos-Network Switchesp. 253
10.1 Routing Properties and Scheduling Methodsp. 255
10.2 A Suboptimal Straight Matching Method for Dynamic Routingp. 258
10.3 The ATLANTA Switchp. 259
10.3.1 Basic architecturep. 261
10.3.2 Distributed and random arbitrationp. 261
10.3.3 Multicastingp. 262
10.4 The Continuous Round-Robin Dispatching Switchp. 263
10.4.1 Basic architecturep. 264
10.4.2 Concurrent round-robin dispatching (CRRD) schemep. 265
10.4.3 Desynchronization effect of CRRDp. 267
10.5 The Path Switchp. 268
10.5.1 Homogeneous capacity and route assignmentp. 272
10.5.2 Heterogeneous capacity assignmentp. 274
Referencesp. 277
11 Optical Packet Switchesp. 279
11.1 All-Optical Packet Switchesp. 281
11.1.1 The staggering switchp. 281
11.1.2 ATMOSp. 282
11.1.3 Duan's switchp. 283
11.2 Optoelectronic Packet Switchesp. 284
11.2.1 HYPASSp. 284
11.2.2 STAR-TRACKp. 286
11.2.3 Cisneros and Brackett's Architecturep. 287
11.2.4 BNR switchp. 289
11.2.5 Wave-mux switchp. 290
11.3 The 3M Switchp. 291
11.3.1 Basic architecturep. 291
11.3.2 Cell delineation unitp. 294
11.3.3 VCI-overwrite unitp. 296
11.3.4 Cell synchronization unitp. 297
11.4 Optical Interconnection Network for Terabit IP Routersp. 301
11.4.1 Introductionp. 301
11.4.2 A terabit IP router architecturep. 303
11.4.3 Router module and route controllerp. 306
11.4.4 Optical interconnection networkp. 309
11.4.5 Ping-pong arbitration unitp. 315
11.4.6 OIN complexityp. 324
11.4.7 Power budget analysisp. 326
11.4.8 Crosstalk analysisp. 328
Referencesp. 331
12 Wireless ATM Switchesp. 337
12.1 Wireless ATM Structure Overviewsp. 338
12.1.1 System considerationsp. 338
12.1.2 Wireless ATM protocolp. 349
12.2 Wireless ATM Systemsp. 341
12.2.1 NEC's WATMnet prototype systemp. 341
12.2.2 Olivetti's radio ATM LANp. 342
12.2.3 Virtual connection treep. 342
12.2.4 BAHAMA wireless ATM LANp. 343
12.2.5 NTT's wireless ATM Accessp. 343
12.2.6 Other European projectsp. 243
12.3 Radio Access Layersp. 344
12.3.1 Radio physical layerp. 344
12.3.2 Medium access control layerp. 346
12.3.3 Data link control layerp. 346
12.4 Handoff in Wireless ATMp. 347
12.4.1 Connection reroutingp. 348
12.4.2 Bufferingp. 340
12.4.3 Cell routing in a COSp. 351
12.5 Mobility-Support ATM Switchp. 352
12.5.1 Design of a mobility-support switchp. 353
12.5.2 Performancep. 358
Referencesp. 362
13 IP Route Lookupsp. 365
13.1 IP Router Designp. 366
13.1.1 Architectures of generic routersp. 366
13.1.2 IP route lookup designp. 368
13.2 IP Route Lookup Based on Caching Techniquep. 369
13.3 IP Route Lookup Based on Standard Trie Structurep. 369
13.4 Patricia Treep. 372
13.5 Small Forwarding Tables for Fast Route Lookupsp. 373
13.5.1 Level 1 of data structurep. 374
13.5.2 Levels 2 and 3 of data structurep. 376
13.5.3 Performancep. 377
13.6 Route Lookups in Hardware at Memory Access Speedsp. 377
13.6.1 The DIR-24-8-BASIC schemep. 378
13.6.2 Performancep. 381
13.7 IP Lookups Using Multiway Searchp. 381
13.7.1 Adapting binary search for best matching prefixp. 381
13.7.2 Precomputed 16-bit prefix tablep. 384
13.7.3 Multiway binary search: exploiting the cache linep. 385
13.7.4 Performancep. 388
13.8 IP Route Lookups for Gigabit Switch Routersp. 388
13.8.1 Lookup algorithms and data structure constructionp. 388
13.8.2 Performancep. 395
13.9 IP Route Lookups Using Two-Trie Structurep. 396
13.9.1 IP route lookup algorithmp. 397
13.9.2 Prefix update algorithmsp. 398
13.9.3 Performancep. 403
Referencesp. 404
Appendix Sonet and ATM Protocolsp. 407
A.1 ATM Protocol Reference Modelp. 409
A.2 Synchronous Optical Network (SONET)p. 410
A.2.1 SONET sublayersp. 410
A.2.2 STS-N signalsp. 412
A.2.3 SONET overhead bytesp. 414
A.2.4 Scrambling and descramblingp. 417
A.2.5 Frequency justificationp. 418
A.2.6 Automatic protection switching (APS)p. 419
A.2.7 STS-3 versus STS-3cp. 421
A.2.8 OC-N multiplexerp. 422
A.3 Sub-Layer Functions in Reference Modelp. 423
A.4 Asynchronous Transfer Mode (ATM)p. 425
A.4.1 Virtual path/virtual channel identifier (VPI/VCI)p. 426
A.4.2 Payload type identifier (PTI)p. 427
A.4.3 Cell loss priority (CLP)p. 428
A.4.4 Pre-defined header field valuesp. 428
A.5 ATM Adaptation Layer (AAL)p. 429
A.5.1 AAL type 1 (AAL1)p. 431
A.5.2 AAL type 2 (AAL2)p. 433
A.5.3 AAL types 3/4 (AAL3/4)p. 434
A.5.4 AAL type 5 (AAL5)p. 436
Referencesp. 438
Indexp. 439
Go to:Top of Page