Cover image for New perspectives on deep-water sandstones : origin, recognition, initiation, and reservoir quality
Title:
New perspectives on deep-water sandstones : origin, recognition, initiation, and reservoir quality
Series:
Handbook of petroleum exploration and production ; 9

Handbook of petroleum exploration and production ; 9.
Edition:
1st ed.
Publication Information:
Amsterdam, NE. ; Boston : Elsevier, 2012.
Physical Description:
xix, 486 p., [16] p. of plates : ill. ; 24 cm.
ISBN:
9780444563354
Subject Term:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010302722 QE471.15.S25 N49 2012 Open Access Book Book
Searching...

On Order

Summary

Summary

This handbook is vital for understanding the origin of deep-water sandstones, emphasizing sandy-mass transport deposits (SMTDs) and bottom-current reworked sands (BCRSs) in petroleum reservoirs. This cutting-edge perspective, a pragmatic alternative to the conventional turbidite concepts, is crucial because the turbidite paradigm is built on a dubious foundation without empirical data on sandy turbidity currents in modern oceans. In the absence of evidence for sandy turbidity currents in natural environments, elegant theoretical models and experimental observations of turbidity currents are irrelevant substitutes for explaining the origin of sandy deposits as "turbidites." In documenting modern and ancient SMTDs (sandy slides, sandy slumps, and sandy debrites) and BCRSs (deposits of thermohaline [contour] currents, wind-driven currents, and tidal currents), the author describes and interprets core and outcrop (1:20 to 1:50 scale) from 35 case studies worldwide (which include 32 petroleum reservoirs), totaling more than 10,000 m in cumulative thickness, carried out during the past 36 years (1974-2010). The book dispels myths about the importance of sea level lowstand and provides much-needed clarity on the triggering of sediment failures by earthquakes, meteorite impacts, tsunamis, and cyclones with implications for the distribution of deep-water sandstone petroleum reservoirs.


Table of Contents

Dedicationp. v
Prefacep. xi
Acknowledgmentsp. xiii
1 Introductionp. 1
1.1 What is Deep Water?p. 1
1.2 Flawed Turbidite Paradigmp. 9
1.2.1 Lack of Empirical Data on Sandy Turbidity Currentsp. 13
1.3 New Perspectives: SMTDs and BCRSp. 20
1.3.1 Direct Observationsp. 21
1.3.2 Economic Importancep. 34
1.4 Databasep. 34
1.5 Scope and Organizationp. 37
1.6 Process Sedimentologyp. 39
1.7 Synopsisp. 40
2 Origin and Classification of Sandy Mass-Transport Depositsp. 41
2.1 Introductionp. 41
2.2 Literaturep. 45
2.3 Classificationp. 46
2.4 Landslide Versus Mass Transportp. 57
2.5 Subaerial Processes Based on Types of Movement and Materialp. 58
2.6 Subaqueous Processes Based on Mechanical Behaviourp. 59
2.6.1 Sediment Concentrationp. 60
2.6.2 Sandy Mass-Transport Depositsp. 60
2.7 Subaqueous Processes Based on Sediment-support Mechanismp. 61
2.8 Subaqueous Processes Based on Process Continuump. 63
2.9 Subaqueous Processes Based on Transport Velocityp. 63
2.10 Synopsisp. 65
3 Recognition of Sandy Mass-Transport Depositsp. 67
3.1 Introductionp. 67
3.2 Sandy Slidep. 69
3.3 Sandy Slumpp. 75
3.4 Sandy Debritep. 85
3.5 Origin of Massive Sandstonep. 112
3.6 Problems with Interpretation of Wireline Logsp. 116
3.7 Problems with Interpretation of Seismic Faciesp. 118
3.8 Problems Associated with Interpretation of Seismic Sinuous Geometryp. 124
3.9 Synopsisp. 127
4 Bottom-Current Reworked Sandsp. 129
4.1 Introductionp. 129
4.2 Surface Currents, Deep-water Masses, and Bottom Currentsp. 129
4.2.1 Surface Currentsp. 131
4.2.2 Deep-water Massesp. 132
4.2.3 Bottom Currentsp. 134
4.3 Bottom Currents versus Turbidity Currentsp. 134
4.4 Genetic Nomenclaturep. 136
4.5 Thermohaline-Induced Geostrophic Bottom Currentsp. 139
4.5.1 Antarctic and Arctic Bottom Currentsp. 139
4.5.2 Current Velocityp. 140
4.5.3 Sedimentological Criteriap. 142
4.5.4 Problematic Contourite Facies Modelp. 150
4.6 Wind-Driven Bottom Currentsp. 153
4.6.1 The Gulf Streamp. 153
4.6.2 The Loop Currentp. 154
4.6.3 Current Velocityp. 155
4.6.4 The Loop Current-Tropical Cyclone Connectionp. 157
4.6.5 Sedimentological Criteriap. 157
4.7 Deepwater Tidal Bottom Currentsp. 166
4.7.1 Submarine Canyonsp. 166
4.7.2 Current Velocityp. 175
4.7.3 Sedimentological Criteriap. 177
4.7.4 Facies Associations in Submarine Canyonsp. 188
4.8 Baroclinic Currents (Internal Tides)p. 194
4.8.1 Nomenclature and Backgroundp. 194
4.8.2 Submarine Canyonsp. 197
4.8.3 Current Velocityp. 198
4.8.4 M 2 Tidal Energy Dissipation in the Deep Oceanp. 199
4.8.5 M 2 Barotropic and Baroclinic Tides in the Indonesian Seasp. 201
4.8.6 Sedimentological Criteriap. 206
4.9 Problematic Bedform-Velocity Matrix for Deep-water Bottom Currentsp. 209
4.10 Problems with Interpretation of Seismic Facies and Geometriesp. 212
4.10.1 Seismic Faciesp. 212
4.10.2 Wave Geometryp. 213
4.10.3 Channel-Levee Geometryp. 217
4.10.4 Sheet Geometryp. 219
4.11 Synopsisp. 219
5 Initiation of Deep-Water Sediment Failuresp. 221
5.1 Introductionp. 221
5.2 Short-term Triggering Eventsp. 221
5.2.1 Earthquakesp. 221
5.2.2 Meteorite Impactsp. 231
5.2.3 Volcanic Activityp. 231
5.2.4 Tsunami Wavesp. 234
5.2.5 Rogue Wavesp. 240
5.2.6 Cyclonic Wavesp. 242
5.2.7 Monsoon Floodingp. 251
5.2.8 Ebb Tidal Currentsp. 252
5.2.9 Wildfirep. 253
5.3 Intermediate-term Triggering Eventsp. 253
5.3.1 Tectonic Oversteepeningp. 253
5.3.2 Glacial Maxima and Loadingp. 253
5.3.3 Salt Movementsp. 254
5.3.4 Depositional Loadingp. 255
5.3.5 Hydrostatic Loadingp. 256
5.3.6 Ocean-bottom Currentsp. 257
5.3.7 Biological Erosionp. 258
5.3.8 Gas Hydrate Decompositionp. 259
5.4 Long-term Triggering Eventsp. 260
5.4.1 Sea-level Lowstandp. 260
5.4.2 The Obsolescence of Sea-level Lowstand Modelp. 261
5.5 Synopsisp. 270
6 Implications for Deep-water Sandstone Reservoirsp. 271
6.1 Grain-Size Distributionp. 271
6.2 Dimensions and Geometriesp. 271
6.2.1 Slides and Slumpsp. 271
6.2.2 Debritesp. 275
6.3 Long-Runout MTDp. 278
6.4 Turbidites versus Debritesp. 280
6.5 Turbidites versus Tidalitesp. 283
6.6 SMTD and BCRS, Gulf of Mexicop. 284
6.7 Chicxulub Meteorite Impact, Gulf of Mexicop. 287
6.8 Sand Injectionp. 288
6.8.1 Recognitionp. 288
6.8.2 Triggering Mechanismsp. 291
6.8.3 Seismicity-Induced Injectionp. 292
6.8.4 Deposition-Induced Injectionp. 293
6.8.5 Gryphon Field, U.K. North Seap. 294
6.8.6 Edop Field, Offshore Nigeriap. 306
6.9 Sequence Stratigraphyp. 307
6.9.1 Problematic Sequence Boundariesp. 314
6.10 Synopsisp. 320
7 Reservoir Quality-Global Examplesp. 321
7.1 Offshore Californiap. 321
7.2 Offshore Nigeriap. 322
7.3 Gulf of Mexicop. 323
7.4 Straits of Floridap. 327
7.5 U.K. North Seap. 330
7.6 Krishna-Godavari Basin, Bay of Bengalp. 331
7.6.1 Introductionp. 331
7.6.2 Depositional Faciesp. 333
7.6.3 Reservoir Geometryp. 337
7.6.4 Reservoir Qualityp. 337
7.7 Synopsisp. 342
8 Epiloguep. 343
Appendix A Concepts, Glossary, and Methodologyp. 345
Referencesp. 425
Indexp. 479
About the Authorp. 487
Color Platesp. 489