Cover image for Analytical ultracentrifugation of polymers and nanoparticles
Title:
Analytical ultracentrifugation of polymers and nanoparticles
Personal Author:
Series:
Springer laboratory
Publication Information:
New York, NY : Springer, 2006
Physical Description:
xiii, 237 p. : ill. ; 24 cm.
ISBN:
9783540234326
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010179565 QD54.C4 M34 2006 Open Access Book Book
Searching...

On Order

Summary

Summary

Analytical ultracentrifugation (AUC) is a powerful method for the characterization of polymers, biopolymers, polyelectrolytes, nanoparticles, dispersions, and other colloidal systems. The method is able to determine the molar mass, the particle size, the particle density and interaction parameters like virial coefficients and association constants. Because AUC is also a fractionation method, the determination of the molar mass distribution, the particle size distribution, and the particle density distribution is possible. A special technique, the density gradient method, allows fractionating heterogeneous samples according to their chemical nature that means being able to detect chemical heterogeneity. The book is divided into chapters concerning instrumentation, sedimentation velocity runs, density gradient runs, application examples and future developments. In particular, the detailed application chapter demonstrates the versatility and power of AUC by means of many interesting and important industrial examples. Thus the book concentrates on practical aspects rather than details of centrifugation theory.

Both authors have many years of experience in an industrial AUC research laboratory of a world leading chemical company.


Table of Contents

1 Introductionp. 1
1.1 Historic Examples of Ultracentrifugationp. 2
1.1.1 Investigations on Gold Colloids in 1924p. 3
1.1.2 Investigations on the Structure of DNA in 1957p. 5
1.2 Basic Theory of Ultracentrifugationp. 7
1.2.1 Svedberg's Simplified Theoryp. 8
1.2.2 Derivation of Lamm's Equationp. 10
1.3 Basic Experiment Types of Ultracentrifugationp. 12
1.3.1 Sedimentation Velocity Experimentp. 12
1.3.2 Synthetic Boundary Experimentp. 13
1.3.3 Sedimentation Equilibriump. 13
1.3.4 Density Gradientp. 14
1.3.5 Approach-to-Equilibrium (or Archibald) Methodp. 15
1.4 Closing Remarksp. 15
Referencesp. 16
2 Analytical Ultracentrifugation, Instrumentationp. 17
2.1 Ultracentrifugesp. 18
2.1.1 The Beckman-Coulter Optima XL-A/Ip. 19
2.1.2 User-Made Centrifugesp. 21
2.2 Rotorsp. 25
2.3 Measuring Cellsp. 26
2.4 Detectorsp. 29
2.4.1 Absorption Opticsp. 31
2.4.2 Interference Opticsp. 34
2.4.3 Schlieren Opticsp. 37
2.4.4 Other Detectorsp. 38
2.5 Multiplexerp. 43
2.6 Auxiliary Measurementsp. 43
2.6.1 Measurement of the Solvent Density and the Partial Specific Volumep. 43
2.6.2 Measurement of the Refractive Index and the Specific Refractive Index Incrementp. 45
Referencesp. 46
3 Sedimentation Velocityp. 47
3.1 Introductionp. 47
3.2 Basic Example of Sedimentation Velocityp. 47
3.2.1 Determination of sp. 50
3.2.2 Standard Conditions for s Estimationp. 51
3.2.3 Radial Dilution and Thickeningp. 52
3.2.4 Concentration Dependencep. 53
3.3 Advanced Theory of Sedimentation Velocity Runsp. 54
3.3.1 Johnston-Ogston Effectp. 54
3.3.2 Self-Sharpening of Boundariep. 55
3.3.3 Pressure Dependencep. 55
3.3.4 Speed Dependencep. 56
3.3.5 Charge Effectsp. 57
3.3.6 Separation of Sedimentation and Diffusionp. 58
3.3.7 Test of Homogeneityp. 61
3.4 Sedimentation Velocity Runs of Macromolecules to Measure Average M and MMDp. 62
3.4.1 Evaluation of the Average Molar Mass M by Sedimentation Velocity Runs via Scaling Lawsp. 62
3.4.2 Evaluation of Molar Mass Distributions (MMD) by Sedimentation Velocity Runs via Scaling Lawsp. 64
3.5 Sedimentation Velocity Runs on Particles to Measure Average d[subscript p] and PSDp. 69
3.5.1 Particle Size Distribution via AUC Turbidity Detector and Mie Theoryp. 70
3.5.2 Coupling Technique to Measure very Broad PSDp. 77
3.5.3 H[subscript 2]0-D[subscript 2]0 Density Variation Method to Measure Particle Densities via Sedimentation Velocity Runsp. 80
3.5.4 PSD Measurement of very Small Platinum Clusters Using UV Opticsp. 84
3.6 Synthetic Boundary Experimentsp. 86
3.6.1 Synthetic Boundary Crystallization Ultracentrifugationp. 93
Referencesp. 95
4 Density Gradientsp. 97
4.1 Introductionp. 98
4.2 Static Density Gradientsp. 101
4.2.1 Theory of Static Density Gradientsp. 102
4.2.2 Gradient Materialsp. 115
4.2.3 Experimental Procedurep. 117
4.2.4 Examplesp. 118
4.3 Dynamic Density Gradientsp. 120
4.4 Other Types of Density Gradientsp. 125
4.4.1 Percoll Density Gradientp. 125
Referencesp. 129
5 Sedimentation Equilibriump. 131
5.1 Introductionp. 131
5.2 Experimental Procedurep. 133
5.3 Data Analysisp. 138
5.3.1 Basic Equations for Molar Mass Averages - Classical Evaluation of AUC Equilibrium Runsp. 138
5.3.2 Basic Equations for Molar Mass Distributions - Nonlinear Regression Evaluation (Lechner Method)p. 141
5.3.3 Application of the Basic Equations - Classical and Nonlinear Regression Evaluationp. 144
5.3.4 M-STAR, a Special Data Analysis to obtain M[subscript w]p. 149
5.4 Examplesp. 151
5.4.1 Absorption Optics Examples of a Polyelectrolyte and Calibration Polystyrene NBS 706p. 152
5.4.2 Association Equilibrium Example and AUC Buoyant Density Method to Determine [Characters not reproducible]p. 155
5.4.3 The New Fluorescence Detector of Laue Used for Green Fluorescent Proteinp. 158
5.5 Further AUC Methods to Measure Molar Massesp. 159
Referencesp. 162
6 Practical Examples of Combination of Methodsp. 163
6.1 Combination of Different AUC Methodsp. 163
6.1.1 Core/Shell Particlesp. 163
6.1.2 Characterization of Microgels and Nanogelsp. 170
6.1.3 Ion Exchange in Carboxylated Laticesp. 179
6.2 Combination of AUC with Other Techniquesp. 189
6.2.1 AUC and SFFFp. 190
6.2.2 AUC and EMp. 198
6.3 Literature Examples: AUC and Nanoparticlesp. 212
Referencesp. 212
7 Recent Developments and Future Outlookp. 215
7.1 New AUC Instrumentation and Detectorsp. 216
7.2 New AUC Methodsp. 222
7.3 New AUC Data Analysisp. 228
Referencesp. 233
8 Subject Indexp. 235