Cover image for Fossil earthquakes : the formation and preservation of Pseudotachylytes
Title:
Fossil earthquakes : the formation and preservation of Pseudotachylytes
Personal Author:
Series:
Lecture notes in earth sciences ; 111
Publication Information:
Berlin : Springer, 2008
Physical Description:
xii, 348 p. : ill. (some col.) ; 25 cm.
ISBN:
9783540742357

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010164314 QE534 L56 2007 Open Access Book Book
Searching...

On Order

Summary

Summary

This book focuses on the earthquake source materials produced or deformed by both seismic faulting and aseismic creep within seismogenic fault zones at different levels of the crust. In particular, the mechanisms and processes involved in the formation of earthquake materials are covered. The book is intended to help bridge the gap between seismology and geology and to encourage further studies of earthquake mechanisms and seismic faulting processes.


Table of Contents

1 Introductionp. 1
2 Terminology and Origin of Pseudotachylytep. 5
2.1 Terminologyp. 5
2.2 Controversy Regarding the Physical Origin of Pseudotachylytep. 8
3 Pseudotachylyte-Related Fault Rocks and Conceptual Fault Modelsp. 17
3.1 Introductionp. 17
3.2 Fault Rocksp. 18
3.2.1 Classification of Fault Rocksp. 18
3.2.2 Mylonitic Rocksp. 23
3.2.3 Cataclastic Rocksp. 25
3.2.4 Formation of S-C Fabricsp. 39
3.3 Fault Zone Strength and Fault Modelp. 40
3.3.1 Seismogenic Fault Zone Strengthp. 40
3.3.2 Conceptual Fault Zone Modelp. 43
4 Tectonic Environment and Structure of Pseudotachylyte Veinsp. 47
4.1 Tectonic Environment and Field Occurrence of Pseudotachylytep. 47
4.1.1 Tectonic Environmentp. 47
4.1.2 Field Occurrencep. 48
4.1.3 Chilling-margin and Crack Texturesp. 55
4.2 Classification of Pseudotachylyte Veinsp. 60
4.2.1 Fault Veins and Injection Veinsp. 60
4.2.2 Pseudotachylyte Generation Zonesp. 64
4.3 Relation Between Fault Vein Thickness and Slip Amountp. 70
5 Pseudotachylyte Matrixp. 75
5.1 Introductionp. 75
5.2 Microstructural Characteristicsp. 76
5.2.1 Textural Classification of Pseudotachylyte Matrixp. 76
5.2.2 Flow Structuresp. 81
5.2.3 Vesicles and Amygdulesp. 84
5.3 Powder X-Ray Diffraction Analysisp. 90
5.3.1 X-Ray Diffraction Patterns for Pseudotachylytep. 90
5.3.2 Quantitative Analysis of Glass and the Crystalline Fractionp. 93
5.3.3 Quantitative Analysis of Crystalline Materialp. 95
5.4 Discussionp. 96
5.4.1 Properties of Glass and Glassy Matrixp. 96
5.4.2 Effect of Frictional Melt on Fault Strengthp. 97
5.4.3 Estimation of the Formation Depth of Pseudotachylytep. 98
6 Microlitesp. 105
6.1 Introductionp. 105
6.2 Texture and Morphology of Microlitep. 106
6.2.1 Texturep. 106
6.2.2 Morphologyp. 106
6.3 Microlite Chemistry and Magnetic Propertiesp. 118
6.3.1 Microlite Chemistryp. 118
6.3.2 Magnetic Propertiesp. 128
6.4 Discussion of the Mechanism of Microlite Formationp. 132
7 Fragments Within Pseudotachylyte Veinsp. 139
7.1 Terminologyp. 139
7.2 Fragments that Resemble Conglomerate Clastsp. 139
7.3 Grain-size Analysisp. 143
7.3.1 Grain-size Distribution Within Melt-origin Pseudotachylytep. 143
7.3.2 Grain-size Distribution: A Discussionp. 148
7.4 Fabrics of Fragments and Degree of Roundingp. 151
7.4.1 Fabricsp. 151
7.4.2 Degree of Rounding of Fragmentsp. 151
7.5 Formation of Rounded Fragments: A Discussionp. 155
8 Chemical Composition and Melting Processes of Pseudotachylytep. 159
8.1 Introductionp. 159
8.2 Bulk-Vein and Matrix Compositionsp. 160
8.2.1 Bulk Composition of Pseudotachylyte Veinsp. 160
8.2.2 Chemical Composition of Pseudotachylyte Matrixp. 162
8.2.3 Water Contents of Pseudotachylyte Veinsp. 168
8.3 Discussionp. 169
8.3.1 Melting Processesp. 169
8.3.2 Melt Temperaturep. 171
8.3.3 Role of Water During Frictional Meltingp. 173
9 Formation of Pseudotachylyte in the Brittle and Plastic Regimesp. 177
9.1 Introductionp. 177
9.2 Woodroffe Pseudotachylytesp. 179
9.2.1 Tectonic Setting of the Woodroffe Thrustp. 179
9.2.2 Field Occurrences of the Woodroffe Pseudotachylytesp. 181
9.2.3 Microstructuresp. 187
9.3 Dahezhen Pseudotachylytesp. 197
9.3.1 Tectonic Setting of the Dahezhen Shear Zonep. 197
9.3.2 Field Occurrence of the Dahezhen Pseudotachylytesp. 198
9.3.3 Microscopy and Chemical Compositionp. 204
9.4 Discussionp. 212
9.4.1 Formation Mechanisms of Large Volumes of Pseudotachylytesp. 212
9.4.2 Conditions of Formation of the Dahezhen and Woodroffe M-Pt Veinsp. 216
10 Crushing-Origin Pseudotachylyte and Veinlet Cataclastic Rocksp. 225
10.1 Introductionp. 225
10.2 Occurrence of Crushing-Origin Pseudotachylyte and Cataclastic Veinsp. 226
10.2.1 Crushing-Origin Pseudotachylytep. 226
10.2.2 Fault-Gouge Injection Veinsp. 230
10.2.3 Layered Fault Gouge and Pseudotachylyte Veinsp. 232
10.2.4 Crack-Fill Veinsp. 234
10.3 Petrologic Characteristics of Veinlet Cataclastic Rocksp. 237
10.3.1 Microstructures of Veinlet Cataclastic Rocksp. 237
10.3.2 Powder X-ray Diffraction Analysis of Veinlet Materialp. 244
10.3.3 Chemical Composition Data and Isotope Analysesp. 250
10.3.4 Age Data for Crack-fill Veinsp. 252
10.4 Discussion on the Formation Mechanisms of Veinlet Cataclastic Rocksp. 253
10.4.1 Formation Mechanism of Amorphous Material Within Veinlet Cataclastic Rocksp. 253
10.4.2 Coseismic Fluidization of Fine-grained Material Within Fault Zonesp. 254
10.4.3 Repeated Events of Seismic Slipp. 256
10.4.4 Repeated Coseismic Infiltration of Surface Water into Deep Fault Zonesp. 257
11 Landslide-related Pseudotachylytep. 265
11.1 Introductionp. 265
11.2 Occurrences of Landslides and Related Pseudotachylytesp. 266
11.2.1 Langtang Himalaya Landslide and Related Pseudotachylytep. 266
11.2.2 Chiufener-Shan Landslide and Related Pseudotachylytep. 269
11.3 Petrographic Characteristics of Landslide-related Pseudotachylytesp. 274
11.3.1 Petrography of the Langtang Himalaya Pseudotachylytep. 274
11.3.2 Petrography of the Chiufener-Shan Pseudotachylytep. 277
11.3.3 Glass Contents of the Observed Pseudotachylytesp. 279
11.4 Discussion of the P-T Conditions during the Formation of Landslide-related Pseudotachylytep. 280
12 Experimentally Generated Pseudotachylytep. 283
12.1 Introductionp. 283
12.2 High-Velocity Frictional Experimentsp. 284
12.2.1 Test Equipment and Experimental Conditionsp. 284
12.2.2 Experiment Samples and Proceduresp. 290
12.2.3 High-Velocity Frictional Propertiesp. 292
12.3 Microstructures of Experimentally Generated Pseudotachylytep. 293
12.3.1 Textures of the Fault Shear Planep. 293
12.3.2 Vein Geometry and Texture of Molten Materialp. 294
12.4 Powder X-ray Diffraction Analysis of Run Productsp. 300
12.4.1 Diffraction Patterns of Run Productsp. 300
12.4.2 Quantitative Analysisp. 301
12.5 Chemical Composition Datap. 304
12.5.1 Gabbro Samplesp. 304
12.5.2 Granite Samplesp. 307
12.5.3 Albitite-Quartz and Anorthosite-Anorthosite Pairsp. 308
12.6 Discussionp. 315
12.6.1 Vein Geometryp. 315
12.6.2 Melting Texturesp. 315
12.6.3 Non-equilibrium Melting Processesp. 316
12.6.4 Melting Temperaturep. 318
12.6.5 High-Velocity Slip Weakeningp. 319
Referencesp. 321
Indexp. 341