Skip to:Content
|
Bottom
Cover image for Mathematics for neuroscientists
Title:
Mathematics for neuroscientists
Personal Author:
Edition:
1st ed.
Publication Information:
Amsterdam, NE ; Boston : Elsevier Academic Press, 2010.
Physical Description:
xi, 486 p. : ill. (some col.) ; 28 cm.
ISBN:
9780123748829

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010230539 QP356 G33 2010 f Open Access Book Book
Searching...

On Order

Summary

Summary

Virtually all scientific problems in neuroscience require mathematical analysis, and all neuroscientists are increasingly required to have a significant understanding of mathematical methods. There is currently no comprehensive, integrated introductory book on the use of mathematics in neuroscience; existing books either concentrate solely on theoretical modeling or discuss mathematical concepts for the treatment of very specific problems. This book fills this need by systematically introducing mathematical and computational tools in precisely the contexts that first established their importance for neuroscience. All mathematical concepts will be introduced from the simple to complex using the most widely used computing environment, Matlab.

This book will provide a grounded introduction to the fundamental concepts of mathematics, neuroscience and their combined use, thus providing the reader with a springboard to cutting-edge research topics and fostering a tighter integration of mathematics and neuroscience for future generations of students.


Author Notes

Dr. Gabbiani is Professor in the Department of Neuroscience at the Baylor College of Medicine. Having received the prestigious Alexander von Humboldt Foundation research prize in 2012, he just completed a one-year cross appointment at the Max Planck Institute of Neurobiology in Martinsried and has international experience in the computational neuroscience field. Together with Dr. Cox, Dr. Gabbiani co-authored the first edition of this bestselling book in 2010.

Dr. Cox is Professor of Computational and Applied Mathematics at Rice University. Affiliated with the Center for Neuroscience, Cognitive Sciences Program, and the Ken Kennedy Institute for Information Technology, he is also Adjunct Professor of Neuroscience at the Baylor College of Medicine. In addition, Dr. Cox has served as Associate Editor for a number of mathematics journals, including the Mathematical Medicine and Biology and Inverse Problems. He previously authored the first edition of this title with Dr. Gabbiani.


Table of Contents

1 Introduction
2 The Passive Isopotential Cell
3 Differential Equations
4 The Active Isopotential Cell
5 The Quasi-Active Isopotential Cell
6 The Passive Cable
7 Fourier Series and Transforms
8 The Passive Dendritic Tree
9 The Active Dendritic Tree
10 Reduced Single Neuron Models
11 Probability and Random Variables
12 Synaptic Transmission and Quantal Release
13 Neuronal Calcium Signaling
14 The Singular Value Decomposition and Applications
15 Quantification of Spike Train Variability
16 Stochastic Processes
17 Membrane Noise
18 Power and Cross Spectra
19 Natural Light Signals and Phototransduction
20 Firing Rate Codes and Early Vision
21 Models of Simple and Complex Cells
22 Stochastic Estimation Theory
23 Reverse-Correlation and Spike Train Decoding
24 Signal Detection Theory
25 Relating Neuronal Responses and Psychophysics
26 Population Codes
27 Neuronal Networks
28 Solutions to Selected Exercises
Go to:Top of Page