Skip to:Content
|
Bottom
Cover image for Digital filters design for signal and image processing
Title:
Digital filters design for signal and image processing
Series:
Digital signal and image processing series
Publication Information:
London : ISTE, 2006
ISBN:
9781905209453
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010160811 TK7872.F5 D53 2006 Open Access Book Book
Searching...

On Order

Summary

Summary

Dealing with digital filtering methods for 1-D and 2-D signals, this book provides the theoretical background in signal processing, covering topics such as the z-transform, Shannon sampling theorem and fast Fourier transform. An entire chapter is devoted to the design of time-continuous filters which provides a useful preliminary step for analog-to-digital filter conversion.
Attention is also given to the main methods of designing finite impulse response (FIR) and infinite impulse response (IIR) filters. Bi-dimensional digital filtering (image filtering) is investigated and a study on stability analysis, a very useful tool when implementing IIR filters, is also carried out. As such, it will provide a practical and useful guide to those engaged in signal processing.


Author Notes

Mohamed Najim has published several books, more than 220 technical papers and has taught courses in digital signal processing for more than 30 years.


Table of Contents

Yannick Berthoumieu and Eric Grivel and Mohamed NajimMohamed Najim and Eric GrivelEric Grivel and Yannick BerthoumieuDaniel Bastard and Eric GrivelYannick Berthoumieu and Eric Grivel and Mohamed NajimEric Grivel and Mohamed NajimMohamed Najim and Eric GrivelPhilippe BolonYannick BerthoumieuMichel BarretMichel Barret
Introductionp. xiii
Chapter 1 Introduction to Signals and Systemsp. 1
1.1 Introductionp. 1
1.2 Signals: categories, representations and characterizationsp. 1
1.2.1 Definition of continuous-time and discrete-time signalsp. 1
1.2.2 Deterministic and random signalsp. 6
1.2.3 Periodic signalsp. 8
1.2.4 Mean, energy and powerp. 9
1.2.5 Autocorrelation functionp. 12
1.3 Systemsp. 15
1.4 Properties of discrete-time systemsp. 16
1.4.1 Invariant linear systemsp. 16
1.4.2 Impulse responses and convolution productsp. 16
1.4.3 Causalityp. 17
1.4.4 Interconnections of discrete-time systemsp. 18
1.5 Bibliographyp. 19
Chapter 2 Discrete System Analysisp. 21
2.1 Introductionp. 21
2.2 The z-transformp. 21
2.2.1 Representations and summariesp. 21
2.2.2 Properties of the z-transformp. 28
2.2.2.1 Linearityp. 28
2.2.2.2 Advanced and delayed operatorsp. 29
2.2.2.3 Convolutionp. 30
2.2.2.4 Changing the z-scalep. 31
2.2.2.5 Contrasted signal developmentp. 31
2.2.2.6 Derivation of the z-transformp. 31
2.2.2.7 The sum theoremp. 32
2.2.2.8 The final-value theoremp. 32
2.2.2.9 Complex conjugationp. 32
2.2.2.10 Parseval's theoremp. 33
2.2.3 Table of standard transformp. 33
2.3 The inverse z-transformp. 34
2.3.1 Introductionp. 34
2.3.2 Methods of determining inverse z-transformsp. 35
2.3.2.1 Cauchy's theorem: a case of complex variablesp. 35
2.3.2.2 Development in rational fractionsp. 37
2.3.2.3 Development by algebraic division of polynomialsp. 38
2.4 Transfer functions and difference equationsp. 39
2.4.1 The transfer function of a continuous systemp. 39
2.4.2 Transfer functions of discrete systemsp. 41
2.5 Z-transforms of the autocorrelation and intercorrelation functionsp. 44
2.6 Stabilityp. 45
2.6.1 Bounded input, bounded output (BIBO) stabilityp. 46
2.6.2 Regions of convergencep. 46
2.6.2.1 Routh's criterionp. 48
2.6.2.2 Jury's criterionp. 49
Chapter 3 Frequential Characterization of Signals and Filtersp. 51
3.1 Introductionp. 51
3.2 The Fourier transform of continuous signalsp. 51
3.2.1 Summary of the Fourier series decomposition of continuous signalsp. 51
3.2.1.1 Decomposition of finite energy signals using an orthonormal basep. 51
3.2.1.2 Fourier series development of periodic signalsp. 52
3.2.2 Fourier transforms and continuous signalsp. 57
3.2.2.1 Representationsp. 57
3.2.2.2 Propertiesp. 58
3.2.2.3 The duality theoremp. 59
3.2.2.4 The quick method of calculating the Fourier transformp. 59
3.2.2.5 The Wiener-Khintchine theoremp. 63
3.2.2.6 The Fourier transform of a Dirac combp. 63
3.2.2.7 Another method of calculating the Fourier series development of a periodic signalp. 66
3.2.2.8 The Fourier series development and the Fourier transformp. 68
3.2.2.9 Applying the Fourier transform: Shannon's sampling theoremp. 75
3.3 The discrete Fourier transform (DFT)p. 78
3.3.1 Expressing the Fourier transform of a discrete sequencep. 78
3.3.2 Relations between the Laplace and Fourier z-transformsp. 80
3.3.3 The inverse Fourier transformp. 81
3.3.4 The discrete Fourier transformp. 82
3.4 The fast Fourier transform (FFT)p. 86
3.5 The fast Fourier transform for a time/frequency/energy representation of a non-stationary signalp. 90
3.6 Frequential characterization of a continuous-time systemp. 91
3.6.1 First and second order filtersp. 91
3.6.1.1 1st order systemp. 91
3.6.1.2 2nd order systemp. 93
3.7 Frequential characterization of discrete-time systemp. 95
3.7.1 Amplitude and phase frequential diagramsp. 95
3.7.2 Applicationp. 96
Chapter 4 Continuous-Time and Analog Filtersp. 99
4.1 Introductionp. 99
4.2 Different types of filters and filter specificationsp. 99
4.3 Butterworth filters and the maximally flat approximationp. 104
4.3.1 Maximally flat functions (MFM)p. 104
4.3.2 A specific example of MFM functions: Butterworth polynomial filtersp. 106
4.3.2.1 Amplitude-squared expressionp. 106
4.3.2.2 Localization of polesp. 107
4.3.2.3 Determining the cut-off frequency at -3 dB and filter ordersp. 110
4.3.2.4 Applicationp. 111
4.3.2.5 Realization of a Butterworth filterp. 112
4.4 Equiripple filters and the Chebyshev approximationp. 113
4.4.1 Characteristics of the Chebyshev approximationp. 113
4.4.2 Type I Chebyshev filtersp. 114
4.4.2.1 The Chebyshev polynomialp. 114
4.4.2.2 Type I Chebyshev filtersp. 115
4.4.2.3 Pole determinationp. 116
4.4.2.4 Determining the cut-off frequency at -3 dB and the filter orderp. 118
4.4.2.5 Applicationp. 121
4.4.2.6 Realization of a Chebyshev filterp. 121
4.4.2.7 Asymptotic behaviorp. 122
4.4.3 Type II Chebyshev filterp. 123
4.4.3.1 Determining the filter order and the cut-off frequencyp. 123
4.4.3.2 Applicationp. 124
4.5 Elliptic filters: the Cauer approximationp. 125
4.6 Summary of four types of low-pass filter: Butterworth, Chebyshev type I, Chebyshev type II and Cauerp. 125
4.7 Linear phase filters (maximally flat delay or MFD): Bessel and Thomson filtersp. 126
4.7.1 Reminders on continuous linear phase filtersp. 126
4.7.2 Properties of Bessel-Thomson filtersp. 128
4.7.3 Bessel and Bessel-Thomson filtersp. 130
4.8 Papoulis filters (optimum (O[subscript n]))p. 132
4.8.1 General characteristicsp. 132
4.8.2 Determining the poles of the transfer functionp. 135
4.9 Bibliographyp. 135
Chapter 5 Finite Impulse Response Filtersp. 137
5.1 Introduction to finite impulse response filtersp. 137
5.1.1 Difference equations and FIR filtersp. 137
5.1.2 Linear phase FIR filtersp. 142
5.1.2.1 Representationp. 142
5.1.2.2 Different forms of FIR linear phase filtersp. 147
5.1.2.3 Position of zeros in FIR filtersp. 150
5.1.3 Summary of the properties of FIR filtersp. 152
5.2 Synthesizing FIR filters using frequential specificationsp. 152
5.2.1 Windowsp. 152
5.2.2 Synthesizing FIR filters using the windowing methodp. 159
5.2.2.1 Low-pass filtersp. 159
5.2.2.2 High-pass filtersp. 164
5.3 Optimal approach of equal ripple in the stop-band and passbandp. 165
5.4 Bibliographyp. 172
Chapter 6 Infinite Impulse Response Filtersp. 173
6.1 Introduction to infinite impulse response filtersp. 173
6.1.1 Examples of IIR filtersp. 174
6.1.2 Zero-loss and all-pass filtersp. 178
6.1.3 Minimum-phase filtersp. 180
6.1.3.1 Problemp. 180
6.1.3.2 Stabilizing inverse filtersp. 181
6.2 Synthesizing IIR filtersp. 183
6.2.1 Impulse invariance method for analog to digital filter conversionp. 183
6.2.2 The invariance method of the indicial responsep. 185
6.2.3 Bilinear transformationsp. 185
6.2.4 Frequency transformations for filter synthesis using low-pass filtersp. 188
6.3 Bibliographyp. 189
Chapter 7 Structures of FIR and IIR Filtersp. 191
7.1 Introductionp. 191
7.2 Structure of FIR filtersp. 192
7.3 Structure of IIR filtersp. 192
7.3.1 Direct structuresp. 192
7.3.2 The cascade structurep. 209
7.3.3 Parallel structuresp. 211
7.4 Realizing finite precision filtersp. 211
7.4.1 Introductionp. 211
7.4.2 Examples of FIR filtersp. 212
7.4.3 IIR filtersp. 213
7.4.3.1 Introductionp. 213
7.4.3.2 The influence of quantification on filter stabilityp. 221
7.4.3.3 Introduction to scale factorsp. 224
7.4.3.4 Decomposing the transfer function into first- and second-order cellsp. 226
7.5 Bibliographyp. 231
Chapter 8 Two-Dimensional Linear Filteringp. 233
8.1 Introductionp. 233
8.2 Continuous modelsp. 233
8.2.1 Representation of 2-D signalsp. 233
8.2.2 Analog filteringp. 235
8.3 Discrete modelsp. 236
8.3.1 2-D samplingp. 236
8.3.2 The aliasing phenomenon and Shannon's theoremp. 240
8.3.2.1 Reconstruction by linear filtering (Shannon's theorem)p. 240
8.3.2.2 Aliasing effectp. 240
8.4 Filtering in the spatial domainp. 242
8.4.1 2-D discrete convolutionp. 242
8.4.2 Separable filtersp. 244
8.4.3 Separable recursive filteringp. 246
8.4.4 Processing of side effectsp. 249
8.4.4.1 Prolonging the image by pixels of null intensityp. 250
8.4.4.2 Prolonging by duplicating the border pixelsp. 251
8.4.4.3 Other approachesp. 252
8.5 Filtering in the frequency domainp. 253
8.5.1 2-D discrete Fourier transform (DFT)p. 253
8.5.2 The circular convolution effectp. 255
8.6 Bibliographyp. 259
Chapter 9 Two-Dimensional Finite Impulse Response Filter Designp. 261
9.1 Introductionp. 261
9.2 Introduction to 2-D FIR filtersp. 262
9.3 Synthesizing with the two-dimensional windowing methodp. 263
9.3.1 Principles of methodp. 263
9.3.2 Theoretical 2-D frequency shapep. 264
9.3.2.1 Rectangular frequency shapep. 264
9.3.2.2 Circular shapep. 266
9.3.3 Digital 2-D filter design by windowingp. 271
9.3.4 Applying filters based on rectangular and circular shapesp. 271
9.3.5 2-D Gaussian filtersp. 274
9.3.6 1-D and 2-D representations in a continuous spacep. 274
9.3.6.1 2-D specificationsp. 276
9.3.7 Approximation for FIR filtersp. 277
9.3.7.1 Truncation of the Gaussian profilep. 277
9.3.7.2 Rectangular windows and convolutionp. 279
9.3.8 An example based on exploiting a modulated Gaussian filterp. 280
9.4 Appendix: spatial window functions and their implementationp. 286
9.5 Bibliographyp. 291
Chapter 10 Filter Stabilityp. 293
10.1 Introductionp. 293
10.2 The Schur-Cohn criterionp. 298
10.3 Appendix: resultant of two polynomialsp. 314
10.4 Bibliographyp. 319
Chapter 11 The Two-Dimensional Domainp. 321
11.1 Recursive filtersp. 321
11.1.1 Transfer functionsp. 321
11.1.2 The 2-D z-transformp. 322
11.1.3 Stability, causality and semi-causalityp. 324
11.2 Stability criteriap. 328
11.2.1 Causal filtersp. 329
11.2.2 Semi-causal filtersp. 332
11.3 Algorithms used in stability testsp. 334
11.3.1 The jury Tablep. 334
11.3.2 Algorithms based on calculating the Bezout resultantp. 339
11.3.2.1 First algorithmp. 340
11.3.2.2 Second algorithmp. 343
11.3.3 Algorithms and rounding-off errorsp. 347
11.4 Linear predictive codingp. 351
11.5 Appendix A: demonstration of the Schur-Cohn criterionp. 355
11.6 Appendix B: optimum 2-D stability criteriap. 358
11.7 Bibliographyp. 362
List of Authorsp. 365
Indexp. 367
Go to:Top of Page