Cover image for Avalanche dynamics : dynamics of rapid flows of dense granular avalanches
Title:
Avalanche dynamics : dynamics of rapid flows of dense granular avalanches
Personal Author:
Publication Information:
Berlin : Springer, 2007
ISBN:
9783540326861

9783540326878
General Note:
Available in online version
Added Author:
Added Title:
Avalanche Dynamics [electronic resource] : Dynamics of Rapid Flows of Dense Granular Avalanches
Electronic Access:
Fulltext
DSP_RESTRICTION_NOTE:
Remote access restricted to users with a valid UTM ID via VPN

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010118907 QC929.A8 P82 2007 Open Access Book Book
Searching...

On Order

Summary

Summary

Avalanches, mudflows and landslides are common and natural phenomena that occur in mountainous regions. With an emphasis on snow avalanches, this book provides a survey and discussion about the motion of avalanche-like flows from initiation to run out. An important aspect of this book is the formulation and investigation of a simple but appropriate continuum mechanical model for the realistic prediction of geophysical flows of granular material.


Table of Contents

Part I Introduction, Conception and the Importance of Avalanche Research
1 Introductionp. 3
1.1 Motivationp. 3
1.2 Goals, Methods and Structurep. 8
1.2.1 Goalsp. 8
1.2.2 Methodologyp. 9
1.2.3 Structurep. 10
1.3 Necessities for Avalanche Studiesp. 14
1.3.1 Snow Avalanche Hazards and Fatalitiesp. 15
1.3.2 Debris and Mud Flows, Pyroclastic Flows and Laharsp. 17
1.3.3 International Scientific Activitiesp. 24
1.4 A History of Avalanche Researchp. 26
1.4.1 Early Historyp. 27
1.4.2 Modern Historyp. 27
2 Granular Avalanches: Definition, Related Concepts and a Reviewp. 47
2.1 The Complexity of Granular Materialsp. 47
2.2 Applications of Granular Flowsp. 48
2.2.1 Chemical Process Engineeringp. 48
2.2.2 Geophysical Flowsp. 49
2.3 Distinctive Properties of Granular Materialsp. 49
2.3.1 Single-phase and Multi-phase Flowsp. 50
2.3.2 Dilatancyp. 51
2.3.3 Cohesionp. 53
2.3.4 Lubricationp. 54
2.3.5 Fluidisationp. 55
2.3.6 Unlubricated Slidingp. 57
2.3.7 Segregation, Inverse Grading and the Brazil Nut Effectp. 60
2.4 Granular Avalanchesp. 62
2.4.1 Definitionp. 62
2.4.2 Pattern Formation by Granular Avalanchesp. 65
2.5 Snow Avalanche Regions, Formation and Dynamicsp. 72
2.5.1 The Home of Natural Snow Avalanchesp. 72
2.5.2 Topographic Conditionsp. 73
2.5.3 Snowpack and Weather Conditionsp. 74
2.5.4 Size and Speed of Snow Avalanchesp. 76
2.5.5 Avalanche Dynamicsp. 77
2.6 Types of Granular Avalanchesp. 79
2.6.1 Flow Avalanchesp. 79
2.6.2 Powder Avalanchesp. 80
2.6.3 Landslides and Avalanches on other Planetsp. 85
2.7 Fundamentals of Granular Avalanchesp. 88
2.7.1 Some Characteristics of Flow Avalanchesp. 88
2.7.2 Stress Generating Mechanismsp. 90
2.7.3 Density Variationsp. 91
2.7.4 Constitutive Relationsp. 92
2.7.5 The Size Effectp. 94
2.8 Survey on Avalanche Modellingp. 96
2.8.1 A View on Some Classical Avalanche Modelsp. 97
2.8.2 Voellmy's Pioneering Workp. 102
2.8.3 Experimental Datap. 104
2.8.4 Necessity for a New Modelp. 110
Part II A Continuum Mechanical Theory for Dense Avalanches Sliding Down Non-Trivial Topographies
3 A Continuum Mechanical Theory for Granular Avalanchesp. 115
3.1 General Introductionp. 115
3.2 The SH-Model, Reduced to its Essentialsp. 117
3.3 Generalisations of the Original Theoryp. 123
3.3.1 Generalisation with Respect to the Coordinate Systemp. 123
3.3.2 Generalisation with Respect to the Basal Topographyp. 125
3.4 A Three-Dimensional Granular Avalanche Modelp. 130
3.4.1 Field Equationsp. 131
3.4.2 Curvilinear Coordinate System in a Vertical Planep. 133
3.4.3 The Model Equationsp. 135
3.4.4 Differences Between Geophysical Mass Flows and Shallow Water Equationsp. 140
3.4.5 Features and Limitations of the Extended Modelp. 141
3.5 Avalanches with Coulomb-Type and Viscous-Type Frictional Resistancep. 145
3.5.1 Model Equations Including Voellmy Dragp. 145
3.5.2 Equations for the Motion of the Centre of Massp. 147
3.5.3 Equations for the Deformation and Motion of Massp. 150
3.6 Avalanches with Erosion and Depositionp. 152
3.6.1 Coordinate Systemp. 153
3.6.2 Accumulation and Depositionp. 154
3.6.3 The Model Equationsp. 156
3.7 Granular Flows in Rotating Drumsp. 158
3.7.1 Solid-Like and Fluid-Like Regionsp. 158
3.7.2 Coordinate Systemp. 159
3.7.3 Governing Equations in a Solid Rotating Bodyp. 160
3.7.4 Interfacial Conditions and Scalingsp. 161
3.7.5 Governing Equations in the Avalanche Regionp. 163
3.8 Summaryp. 165
4 Avalanches in Arbitrarily Curved and Twisted Channelsp. 167
4.1 Motivationp. 167
4.2 The Essence of the New Theoryp. 170
4.3 General Orthogonal Coordinate Systemp. 171
4.4 Non-Dimensional Equationsp. 177
4.4.1 Components of the Gravitational Accelerationp. 179
4.4.2 Balance Equationsp. 181
4.4.3 Kinematic Surface Conditionsp. 183
4.4.4 Traction-Free Condition at the Free Surfacep. 183
4.4.5 The Coulomb Sliding Law at the Basep. 184
4.5 Depth Integrationp. 185
4.6 Orderingp. 188
4.7 Closurep. 191
4.8 Flow Profilep. 196
4.9 The Model Equations in Conservative Formp. 198
4.9.1 Avalanche Motions Down Curved and Twisted Channelsp. 198
4.9.2 The Importance of the New Theoryp. 199
4.9.3 The Standard Form of the Differential Equationsp. 202
4.9.4 Characteristic Speeds and Critical Flowp. 203
4.10 Erosion and Deposition for the Full Set of Equationsp. 204
4.10.1 Inclusion of Erosion and Depositionp. 204
4.10.2 Functional Relation for Erosion and Depositionp. 205
4.11 Discussionp. 207
4.11.1 Summary and Embedding of Earlier Modelsp. 207
4.11.2 The Orthogonal Complex vs. the Orthogonal General Systemp. 209
4.12 Concluding Remarks and Future Outlookp. 210
5 Exact and Semi-Exact Solutions of the Model Equationsp. 213
5.1 Solutions of the Model Equationsp. 213
5.1.1 A Complete Analytical Solutionp. 213
5.1.2 Particular Solutionsp. 214
5.1.3 Numerical Solutionsp. 214
5.2 One-Dimensional Similarity Solutionsp. 215
5.2.1 One-Dimensional Flow Down Inclined Planesp. 215
5.2.2 Flow Over an Arbitrarily Curved and Twisted Channelp. 224
5.2.3 Moderately Curved Bedsp. 226
5.2.4 Variable Bed Frictionp. 230
5.2.5 Variable Bed Friction, Curved Bed and Voellmy Dragp. 249
5.3 Two-Dimensional Similarity Solutionsp. 253
6 Exact Solutions for Flow Avalanches in Rotating Drumsp. 265
6.1 A Simple Exact Solution for Steady Flow in a Rotating Drum Without Erosion and Depositionp. 266
6.1.1 Coordinate System, Geometry of the Drum and the Moving Massp. 266
6.1.2 Avalanche Depth Determined Without Wall Frictionp. 267
6.1.3 Avalanche Depth Determined by Including Wall Frictionp. 270
6.2 An Exact Solution for Steady Flow in a Slowly Rotating Drum with Erosion and Depositionp. 272
6.2.1 A Steady Flow Avalanchep. 272
6.2.2 An Exact Solutionp. 273
6.3 Mixing in a Rotating Drump. 275
6.3.1 Particle Pathsp. 275
6.3.2 Circuit Timep. 280
6.4 An Alternative Model Describing the Transverse Flow and Mixing of Granular Material in a Rotating Cylinderp. 282
6.4.1 Modelp. 282
6.4.2 Experimentsp. 287
6.4.3 Results and Discussionp. 289
6.5 Concluding Remarksp. 293
Part III Shock Capturing Numerical Methods and Simulations of Free Surface Flows of Shallow Avalanches Sliding Over Curved and Twisted Channels
7 Classical and High Resolution Shock-Capturing Numerical Methodsp. 297
7.1 Classical Eulerian and Lagrangean Approachesp. 298
7.1.1 Eulerian Approachp. 300
7.1.2 Lagrangean Approachp. 303
7.2 Some Traditional Numerical Methodsp. 307
7.2.1 First-Order Schemesp. 307
7.2.2 Second-Order Schemesp. 309
7.3 Appropriate Numerical Modellingp. 310
7.4 Modern Numerical Methodsp. 312
7.4.1 Total Variation Diminishing Methodp. 312
7.4.2 Second-Order TVD Schemesp. 313
7.4.3 Cell Reconstruction with Slope Limitersp. 318
7.4.4 Non-Linear Conservation Law and TVD Methodsp. 320
7.4.5 TVD Lax-Friedrichs Methodp. 321
7.4.6 Modified TVDLF Schemep. 322
7.5 NOC Schemesp. 323
7.6 Alternative Numerical Schemesp. 326
7.7 Summaryp. 328
8 Two-Dimensional Shock-Capturing Schemes for Avalanching Flowp. 329
8.1 The Two-Dimensional Lagrangean Techniquesp. 329
8.2 The Two-Dimensional NOC Schemesp. 331
8.2.1 Descriptionp. 331
8.2.2 Predictor Stepp. 336
8.2.3 Corrector Stepp. 337
8.3 Two-Dimensional Shock-Capturing Methods Applied to the Extended Avalanche Equationsp. 338
8.4 Summaryp. 341
9 Avalanche Simulations over Curved and Twisted Channelsp. 343
9.1 Performance of Various Numerical Schemesp. 343
9.1.1 Numerical Performancesp. 344
9.2 Effects of Topographic Variationsp. 350
9.2.1 Constant Cross-Slope Curvaturep. 350
9.2.2 Variable Cross-Slope Curvaturep. 356
9.3 Superimposed Basal Topographyp. 360
9.4 Avalanches Sliding Down Curved and Twisted Channelsp. 363
9.4.1 Flows Through Uniformly Curved and Twisted Channelsp. 364
9.4.2 Avalanching Flows Through Non-Uniformly Curved and Twisted Channelsp. 365
9.5 Sensitivity to Phenomenological Parametersp. 372
9.6 Pressure Dependence of the Friction Anglesp. 375
9.6.1 Mass-Dependent Bed Friction Anglep. 378
9.6.2 Scale Effects Due to the Pressure Dependence of [delta]p. 379
9.7 Formation of Shocksp. 381
9.8 Summaryp. 385
Part IV Experimental Validation of the Theoretical Prediction with Different Measurement Techniques
10 Experimental Findings and a Comparison with the Theoryp. 389
10.1 Why Are Laboratory Experiments Performed? What Can be Inferred from Them?p. 389
10.2 Chute Flow Experimentsp. 392
10.2.1 Experimental Set-Upp. 392
10.2.2 Experimental Procedurep. 395
10.2.3 Measurement of Phenomenological Coefficientsp. 399
10.2.4 Resultsp. 403
10.2.5 Variable Bed Friction Angle (Position-Dependent)p. 409
10.2.6 Chutes with a Convex Curved Bumpp. 411
10.2.7 Limitation of the Modelp. 416
10.3 Avalanche Flow Without Side Confinementp. 417
10.3.1 Experimental Set-Upp. 417
10.3.2 Rolled Surfacesp. 420
10.4 Channelised Avalanche Flowsp. 425
10.5 Avalanches Across Irregular Three-Dimensional Terrainp. 436
10.5.1 The Table-Top Experimentsp. 439
10.5.2 Further Verification of the Model Equationsp. 446
11 Particle Image Velocimetry for Free Surface Flow Avalanchesp. 461
11.1 Introductionp. 461
11.2 Particle Image Velocimetry Techniquep. 462
11.2.1 Image Intensity Fieldp. 463
11.2.2 Cross-Correlation Functionp. 464
11.2.3 Spatial Resolutionp. 466
11.2.4 Summary of the PIV Systemp. 466
11.3 Experimental Set-Up for Granular Avalanchesp. 466
11.3.1 Transparent Fluids and the Usual PIV Set-Upp. 467
11.3.2 Set-Up for Granular Avalanchesp. 467
11.3.3 Technical Detailsp. 468
11.4 Experimental Peculiarities Arising for Granular Materialsp. 468
11.4.1 General Errorsp. 469
11.4.2 Particular Errors for Granular Flowsp. 469
11.5 Post-Processing and Evaluationp. 474
11.6 PIV with Multi-Camerasp. 475
11.7 Particle Tracking Velocimetry (PTV) Measuring Techniquep. 475
12 Avalanche Experiments Using the PIV Measurement Techniquep. 479
12.1 Experimental Detailsp. 480
12.2 Measurement of Avalanche Depth Profilesp. 483
12.3 Validation of the Theoryp. 484
12.3.1 Experiments Using Small-Cap and Quartz Particlesp. 484
12.3.2 The PIV Measurement and Validation of the Theoryp. 486
12.3.3 Evolution of the Avalanche Geometryp. 490
12.3.4 Multi-CCD Cameras and Velocity Shearingp. 490
12.4 Is There a Terminal Velocity on Inclined Planes?p. 493
12.4.1 Backgroundp. 493
12.4.2 Remarks on Experimental Proceduresp. 495
12.4.3 Resultsp. 495
12.4.4 Summaryp. 502
12.5 Concluding Remarksp. 503
Part V Avalanche Protection and Defence Structures
13 Protection Against Snow Avalanche Hazardsp. 507
13.1 Types of Avalanche Protectionp. 508
13.1.1 Avalanche Initiation and Protective Measuresp. 508
13.1.2 Early Effortsp. 510
13.1.3 Modern Methods of Avalanche Defence and Protectionp. 510
13.2 Avalanche Protection in Different Countriesp. 514
13.2.1 Avalanche Protection in Switzerlandp. 514
13.2.2 Avalanche Protection in Francep. 515
13.2.3 Avalanche Protection in Icelandp. 516
13.2.4 Snow Avalanche Protection in Austriap. 518
13.2.5 Snow Avalanche Barriers in North Americap. 518
13.3 Laboratory Experiments: A Means to Design Defence Structuresp. 519
13.3.1 Laboratory Models and Experimentsp. 520
13.3.2 Simulation of Avalanche Protectionp. 523
13.3.3 A Structural Protection Technique by Deflectionp. 525
13.4 Conclusionp. 526
14 Summary and Outlookp. 529
14.1 Knowledge at Presentp. 530
14.1.1 Theoryp. 530
14.1.2 Numericsp. 531
14.1.3 Experimentsp. 532
14.2 Attempts in Futurep. 534
14.2.1 Application in Naturep. 534
14.2.2 Application in the Laboratoryp. 535
14.2.3 Advancing the Numericsp. 536
14.2.4 More Advanced Measurement Techniques and Experimentsp. 536
Referencesp. 539
Name Indexp. 565
Indexp. 571