Cover image for Finite mixture and Markov switching models
Title:
Finite mixture and Markov switching models
Series:
Springer series in statistics
Publication Information:
New York, NY : Springer, 2006
ISBN:
9780387329093

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010150110 QA274.7 F78 2006 Open Access Book Book
Searching...

On Order

Summary

Summary

The past decade has seen powerful new computational tools for modeling which combine a Bayesian approach with recent Monte simulation techniques based on Markov chains. This book is the first to offer a systematic presentation of the Bayesian perspective of finite mixture modelling. The book is designed to show finite mixture and Markov switching models are formulated, what structures they imply on the data, their potential uses, and how they are estimated. Presenting its concepts informally without sacrificing mathematical correctness, it will serve a wide readership including statisticians as well as biologists, economists, engineers, financial and market researchers.


Author Notes

Sylvia Fruhwirth-Schnatter is Professor of Applied Statistics and Econometrics at the Department of Applied Statistics of the Johannes Kepler University in Linz, Austria


Table of Contents

1 Finite Mixture Modelingp. 1
1.1 Introductionp. 1
1.2 Finite Mixture Distributionsp. 3
1.2.1 Basic Definitionsp. 3
1.2.2 Some Descriptive Features of Finite Mixture Distributionsp. 5
1.2.3 Diagnosing Similarity of Mixture Componentsp. 9
1.2.4 Moments of a Finite Mixture Distributionp. 10
1.2.5 Statistical Modeling Based on Finite Mixture Distributionsp. 11
1.3 Identifiability of a Finite Mixture Distributionp. 14
1.3.1 Nonidentifiability Due to Invariance to Relabeling the Componentsp. 15
1.3.2 Nonidentifiability Due to Potential Overfittingp. 17
1.3.3 Formal Identifiability Constraintsp. 19
1.3.4 Generic Identifiabilityp. 21
2 Statistical Inference for a Finite Mixture Model with Known Number of Componentsp. 25
2.1 Introductionp. 25
2.2 Classification for Known Component Parametersp. 26
2.2.1 Bayes' Rule for Classifying a Single Observationp. 26
2.2.2 The Bayes' Classifier for a Whole Data Setp. 27
2.3 Parameter Estimation for Known Allocationp. 29
2.3.1 The Complete-Data Likelihood Functionp. 29
2.3.2 Complete-Data Maximum Likelihood Estimationp. 30
2.3.3 Complete-Data Bayesian Estimation of the Component Parametersp. 31
2.3.4 Complete-Data Bayesian Estimation of the Weightsp. 35
2.4 Parameter Estimation When the Allocations Are Unknownp. 41
2.4.1 Method of Momentsp. 42
2.4.2 The Mixture Likelihood Functionp. 43
2.4.3 A Helicopter Tour of the Mixture Likelihood Surface for Two Examplesp. 44
2.4.4 Maximum Likelihood Estimationp. 49
2.4.5 Bayesian Parameter Estimationp. 53
2.4.6 Distance-Based Methodsp. 54
2.4.7 Comparing Various Estimation Methodsp. 54
3 Practical Bayesian Inference for a Finite Mixture Model with Known Number of Componentsp. 57
3.1 Introductionp. 57
3.2 Choosing the Prior for the Parameters of a Mixture Modelp. 58
3.2.1 Objective and Subjective Priorsp. 58
3.2.2 Improper Priors May Cause Improper Mixture Posteriorsp. 59
3.2.3 Conditionally Conjugate Priorsp. 60
3.2.4 Hierarchical Priors and Partially Proper Priorsp. 61
3.2.5 Other Priorsp. 62
3.2.6 Invariant Prior Distributionsp. 62
3.3 Some Properties of the Mixture Posterior Densityp. 63
3.3.1 Invariance of the Posterior Distributionp. 63
3.3.2 Invariance of Seemingly Component-Specific Functionalsp. 64
3.3.3 The Marginal Posterior Distribution of the Allocationsp. 65
3.3.4 Invariance of the Posterior Distribution of the Allocationsp. 67
3.4 Classification Without Parameter Estimationp. 68
3.4.1 Single-Move Gibbs Samplingp. 69
3.4.2 The Metropolis-Hastings Algorithmp. 72
3.5 Parameter Estimation Through Data Augmentation and MCMCp. 73
3.5.1 Treating Mixture Models as a Missing Data Problemp. 73
3.5.2 Data Augmentation and MCMC for a Mixture of Poisson Distributionsp. 74
3.5.3 Data Augmentation and MCMC for General Mixturesp. 76
3.5.4 MCMC Sampling Under Improper Priorsp. 78
3.5.5 Label Switchingp. 78
3.5.6 Permutation MCMC Samplingp. 81
3.6 Other Monte Carlo Methods Useful for Mixture Modelsp. 83
3.6.1 A Metropolis-Hastings Algorithm for the Parametersp. 83
3.6.2 Importance Sampling for the Allocationsp. 84
3.6.3 Perfect Samplingp. 85
3.7 Bayesian Inference for Finite Mixture Models Using Posterior Drawsp. 85
3.7.1 Sampling Representations of the Mixture Posterior Densityp. 85
3.7.2 Using Posterior Draws for Bayesian Inferencep. 87
3.7.3 Predictive Density Estimationp. 89
3.7.4 Individual Parameter Inferencep. 91
3.7.5 Inference on the Hyperparameter of a Hierarchical Priorp. 92
3.7.6 Inference on Component Parametersp. 92
3.7.7 Model Identificationp. 94
4 Statistical Inference for Finite Mixture Models Under Model Specification Uncertaintyp. 99
4.1 Introductionp. 99
4.2 Parameter Estimation Under Model Specification Uncertaintyp. 100
4.2.1 Maximum Likelihood Estimation Under Model Specification Uncertaintyp. 100
4.2.2 Practical Bayesian Parameter Estimation for Overfitting Finite Mixture Modelsp. 103
4.2.3 Potential Overfittingp. 105
4.3 Informal Methods for Identifying the Number of Componentsp. 107
4.3.1 Mode Hunting in the Mixture Posteriorp. 108
4.3.2 Mode Hunting in the Sample Histogramp. 109
4.3.3 Diagnosing Mixtures Through the Method of Momentsp. 110
4.3.4 Diagnosing Mixtures Through Predictive Methodsp. 112
4.3.5 Further Approachesp. 114
4.4 Likelihood-Based Methodsp. 114
4.4.1 The Likelihood Ratio Statisticp. 114
4.4.2 AIC, BIC, and the Schwarz Criterionp. 116
4.4.3 Further Approachesp. 117
4.5 Bayesian Inference Under Model Uncertaintyp. 117
4.5.1 Trans-Dimensional Bayesian Inferencep. 117
4.5.2 Marginal Likelihoodsp. 118
4.5.3 Bayes Factors for Model Comparisonp. 119
4.5.4 Formal Bayesian Model Selectionp. 121
4.5.5 Choosing Priors for Model Selectionp. 122
4.5.6 Further Approachesp. 123
5 Computational Tools for Bayesian Inference for Finite Mixtures Models Under Model Specification Uncertaintyp. 125
5.1 Introductionp. 125
5.2 Trans-Dimensional Markov Chain Monte Carlo Methodsp. 125
5.2.1 Product-Space MCMCp. 126
5.2.2 Reversible Jump MCMCp. 129
5.2.3 Birth and Death MCMC Methodsp. 137
5.3 Marginal Likelihoods for Finite Mixture Modelsp. 139
5.3.1 Defining the Marginal Likelihoodp. 139
5.3.2 Choosing Priors for Selecting the Number of Componentsp. 141
5.3.3 Computation of the Marginal Likelihood for Mixture Modelsp. 143
5.4 Simulation-Based Approximations of the Marginal Likelihoodp. 143
5.4.1 Some Background on Monte Carlo Integrationp. 143
5.4.2 Sampling-Based Approximations for Mixture Modelsp. 144
5.4.3 Importance Samplingp. 146
5.4.4 Reciprocal Importance Samplingp. 147
5.4.5 Harmonic Mean Estimatorp. 148
5.4.6 Bridge Sampling Techniquep. 150
5.4.7 Comparison of Different Simulation-Based Estimatorsp. 154
5.4.8 Dealing with Hierarchical Priorsp. 159
5.5 Approximations to the Marginal Likelihood Based on Density Ratiosp. 159
5.5.1 The Posterior Density Ratiop. 159
5.5.2 Chib's Estimatorp. 160
5.5.3 Laplace Approximationp. 164
5.6 Reversible Jump MCMC Versus Marginal Likelihoods?p. 165
6 Finite Mixture Models with Normal Componentsp. 169
6.1 Finite Mixtures of Normal Distributionsp. 169
6.1.1 Model Formulationp. 169
6.1.2 Parameter Estimation for Mixtures of Normalsp. 171
6.1.3 The Kiefer-Wolfowitz Examplep. 174
6.1.4 Applications of Mixture of Normal Distributionsp. 176
6.2 Bayesian Estimation of Univariate Mixtures of Normalsp. 177
6.2.1 Bayesian Inference When the Allocations Are Knownp. 177
6.2.2 Standard Prior Distributionsp. 179
6.2.3 The Influence of the Prior on the Variance Ratiop. 179
6.2.4 Bayesian Estimation Using MCMCp. 180
6.2.5 MCMC Estimation Under Standard Improper Priorsp. 182
6.2.6 Introducing Prior Dependence Among the Componentsp. 185
6.2.7 Further Sampling-Based Approachesp. 187
6.2.8 Application to the Fishery Datap. 188
6.3 Bayesian Estimation of Multivariate Mixtures of Normalsp. 190
6.3.1 Bayesian Inference When the Allocations Are Knownp. 190
6.3.2 Prior Distributionsp. 192
6.3.3 Bayesian Parameter Estimation Using MCMCp. 193
6.3.4 Application to Fisher's Iris Datap. 195
6.4 Further Issuesp. 195
6.4.1 Parsimonious Finite Normal Mixturesp. 195
6.4.2 Model Selection Problems for Mixtures of Normalsp. 199
7 Data Analysis Based on Finite Mixturesp. 203
7.1 Model-Based Clusteringp. 203
7.1.1 Some Background on Cluster Analysisp. 203
7.1.2 Model-Based Clustering Using Finite Mixture Modelsp. 204
7.1.3 The Classification Likelihood and the Bayesian MAP Approachp. 207
7.1.4 Choosing Clustering Criteria and the Number of Componentsp. 210
7.1.5 Model Choice for the Fishery Datap. 216
7.1.6 Model Choice for Fisher's Iris Datap. 218
7.1.7 Bayesian Clustering Based on Loss Functionsp. 220
7.1.8 Clustering for Fisher's Iris Datap. 224
7.2 Outlier Modelingp. 224
7.2.1 Outlier Modeling Using Finite Mixturesp. 224
7.2.2 Bayesian Inference for Outlier Models Based on Finite Mixturesp. 225
7.2.3 Outlier Modeling of Darwin's Datap. 226
7.2.4 Clustering Under Outliers and Noisep. 227
7.3 Robust Finite Mixtures Based on the Student-t Distributionp. 230
7.3.1 Parameter Estimationp. 230
7.3.2 Dealing with Unknown Number of Componentsp. 233
7.4 Further Issuesp. 233
7.4.1 Clustering High-Dimensional Datap. 233
7.4.2 Discriminant Analysisp. 235
7.4.3 Combining Classified and Unclassified Observationsp. 236
7.4.4 Density Estimation Using Finite Mixturesp. 237
7.4.5 Finite Mixtures as an Auxiliary Computational Tool in Bayesian Analysisp. 238
8 Finite Mixtures of Regression Modelsp. 241
8.1 Introductionp. 241
8.2 Finite Mixture of Multiple Regression Modelsp. 242
8.2.1 Model Definitionp. 242
8.2.2 Identifiabilityp. 243
8.2.3 Statistical Modeling Based on Finite Mixture of Regression Modelsp. 246
8.2.4 Outliers in a Regression Modelp. 249
8.3 Statistical Inference for Finite Mixtures of Multiple Regression Modelsp. 249
8.3.1 Maximum Likelihood Estimationp. 249
8.3.2 Bayesian Inference When the Allocations Are Knownp. 250
8.3.3 Choosing Prior Distributionsp. 252
8.3.4 Bayesian Inference When the Allocations Are Unknownp. 253
8.3.5 Bayesian Inference Using Posterior Drawsp. 254
8.3.6 Dealing with Model Specification Uncertaintyp. 255
8.4 Mixed-Effects Finite Mixtures of Regression Modelsp. 256
8.4.1 Model Definitionp. 256
8.4.2 Choosing Priors for Bayesian Estimationp. 256
8.4.3 Bayesian Parameter Estimation When the Allocations Are Knownp. 257
8.4.4 Bayesian Parameter Estimation When the Allocations Are Unknownp. 258
8.5 Finite Mixture Models for Repeated Measurementsp. 259
8.5.1 Pooling Information Across Similar Unitsp. 260
8.5.2 Finite Mixtures of Random-Effects Modelsp. 260
8.5.3 Choosing the Prior for Bayesian Estimationp. 265
8.5.4 Bayesian Parameter Estimation When the Allocations Are Knownp. 265
8.5.5 Practical Bayesian Estimation Using MCMCp. 267
8.5.6 Dealing with Model Specification Uncertaintyp. 269
8.5.7 Application to the Marketing Datap. 270
8.6 Further Issuesp. 273
8.6.1 Regression Modeling Based on Multivariate Mixtures of Normalsp. 273
8.6.2 Modeling the Weight Distributionp. 274
8.6.3 Mixtures-of-Experts Modelsp. 274
9 Finite Mixture Models with Nonnormal Componentsp. 277
9.1 Finite Mixtures of Exponential Distributionsp. 277
9.1.1 Model Formulation and Parameter Estimationp. 277
9.1.2 Bayesian Inferencep. 278
9.2 Finite Mixtures of Poisson Distributionsp. 279
9.2.1 Model Formulation and Estimationp. 279
9.2.2 Capturing Overdispersion in Count Datap. 280
9.2.3 Modeling Excess Zerosp. 282
9.2.4 Application to the Eye Tracking Datap. 283
9.3 Finite Mixture Models for Binary and Categorical Datap. 286
9.3.1 Finite Mixtures of Binomial Distributionsp. 286
9.3.2 Finite Mixtures of Multinomial Distributionsp. 288
9.4 Finite Mixtures of Generalized Linear Modelsp. 289
9.4.1 Finite Mixture Regression Models for Count Datap. 290
9.4.2 Finite Mixtures of Logit and Probit Regression Modelsp. 292
9.4.3 Parameter Estimation for Finite Mixtures of GLMsp. 293
9.4.4 Model Selection for Finite Mixtures of GLMsp. 294
9.5 Finite Mixture Models for Multivariate Binary and Categorical Datap. 294
9.5.1 The Basic Latent Class Modelp. 295
9.5.2 Identification and Parameter Estimationp. 296
9.5.3 Extensions of the Basic Latent Class Modelp. 297
9.6 Further Issuesp. 298
9.6.1 Finite Mixture Modeling of Mixed-Mode Datap. 298
9.6.2 Finite Mixtures of GLMs with Random Effectsp. 299
10 Finite Markov Mixture Modelingp. 301
10.1 Introductionp. 301
10.2 Finite Markov Mixture Distributionsp. 301
10.2.1 Basic Definitionsp. 302
10.2.2 Irreducible Aperiodic Markov Chainsp. 304
10.2.3 Moments of a Markov Mixture Distributionp. 308
10.2.4 The Autocorrelation Function of a Process Generated by a Markov Mixture Distributionp. 310
10.2.5 The Autocorrelation Function of the Squared Processp. 311
10.2.6 The Standard Finite Mixture Distribution as a Limiting Casep. 312
10.2.7 Identifiability of a Finite Markov Mixture Distributionp. 313
10.3 Statistical Modeling Based on Finite Markov Mixture Distributionsp. 314
10.3.1 The Basic Markov Switching Modelp. 314
10.3.2 The Markov Switching Regression Modelp. 315
10.3.3 Nonergodic Markov Chainsp. 316
10.3.4 Relaxing the Assumptions of the Basic Markov Switching Modelp. 316
11 Statistical Inference for Markov Switching Modelsp. 319
11.1 Introductionp. 319
11.2 State Estimation for Known Parametersp. 319
11.2.1 Statistical Inference About the Statesp. 320
11.2.2 Filtered State Probabilitiesp. 320
11.2.3 Filtering for Special Casesp. 323
11.2.4 Smoothing the Statesp. 324
11.2.5 Filtering and Smoothing for More General Modelsp. 326
11.3 Parameter Estimation for Known Statesp. 327
11.3.1 The Complete-Data Likelihood Functionp. 327
11.3.2 Complete-Data Bayesian Parameter Estimationp. 329
11.3.3 Complete-Data Bayesian Estimation of the Transition Matrixp. 329
11.4 Parameter Estimation When the States are Unknownp. 330
11.4.1 The Markov Mixture Likelihood Functionp. 330
11.4.2 Maximum Likelihood Estimationp. 333
11.4.3 Bayesian Estimationp. 334
11.4.4 Alternative Estimation Methodsp. 334
11.5 Bayesian Parameter Estimation with Known Number of Statesp. 335
11.5.1 Choosing the Prior for the Parameters of a Markov Mixture Modelp. 335
11.5.2 Some Properties of the Posterior Distribution of a Markov Switching Modelp. 336
11.5.3 Parameter Estimation Through Data Augmentation and MCMCp. 337
11.5.4 Permutation MCMC Samplingp. 340
11.5.5 Sampling the Unknown Transition Matrixp. 340
11.5.6 Sampling Posterior Paths of the Hidden Markov Chainp. 342
11.5.7 Other Sampling-Based Approachesp. 345
11.5.8 Bayesian Inference Using Posterior Drawsp. 345
11.6 Statistical Inference Under Model Specification Uncertaintyp. 346
11.6.1 Diagnosing Markov Switching Modelsp. 346
11.6.2 Likelihood-Based Methodsp. 346
11.6.3 Marginal Likelihoods for Markov Switching Modelsp. 347
11.6.4 Model Space MCMCp. 348
11.6.5 Further Issuesp. 348
11.7 Modeling Overdispersion and Autocorrelation in Time Series of Count Datap. 348
11.7.1 Motivating Examplep. 348
11.7.2 Capturing Overdispersion and Autocorrelation Using Poisson Markov Mixture Modelsp. 349
11.7.3 Application to the Lamb Datap. 351
12 Nonlinear Time Series Analysis Based on Markov Switching Modelsp. 357
12.1 Introductionp. 357
12.2 The Markov Switching Autoregressive Modelp. 358
12.2.1 Motivating Examplep. 358
12.2.2 Model Definitionp. 360
12.2.3 Features of the MSAR Modelp. 362
12.2.4 Markov Switching Models for Nonstationary Time Seriesp. 363
12.2.5 Parameter Estimation and Model Selectionp. 365
12.2.6 Application to Business Cycle Analysis of the U.S. GDP Datap. 365
12.3 Markov Switching Dynamic Regression Modelsp. 371
12.3.1 Model Definitionp. 371
12.3.2 Bayesian Estimationp. 371
12.4 Prediction of Time Series Based on Markov Switching Modelsp. 372
12.4.1 Flexible Predictive Distributionsp. 372
12.4.2 Forecasting of Markov Switching Models via Sampling-Based Methodsp. 374
12.5 Markov Switching Conditional Heteroscedasticityp. 375
12.5.1 Motivating Examplep. 375
12.5.2 Capturing Features of Financial Time Series Through Markov Switching Modelsp. 377
12.5.3 Switching ARCH Modelsp. 378
12.5.4 Statistical Inference for Switching ARCH Modelsp. 380
12.5.5 Switching GARCH Modelsp. 383
12.6 Some Extensionsp. 384
12.6.1 Time-Varying Transition Matricesp. 384
12.6.2 Markov Switching Models for Longitudinal and Panel Datap. 385
12.6.3 Markov Switching Models for Multivariate Time Seriesp. 386
13 Switching State Space Modelsp. 389
13.1 State Space Modelingp. 389
13.1.1 The Local Level Model with and Without Switchingp. 389
13.1.2 The Linear Gaussian State Space Formp. 391
13.1.3 Multiprocess Modelsp. 393
13.1.4 Switching Linear Gaussian State Space Modelsp. 393
13.1.5 The General State Space Formp. 394
13.2 Nonlinear Time Series Analysis Based on Switching State Space Modelsp. 396
13.2.1 ARMA Models with and Without Switchingp. 396
13.2.2 Unobserved Component Time Series Modelsp. 397
13.2.3 Capturing Sudden Changes in Time Seriesp. 398
13.2.4 Switching Dynamic Factor Modelsp. 400
13.2.5 Switching State Space Models as a Semi-Parametric Smoothing Devicep. 401
13.3 Filtering for Switching Linear Gaussian State Space Modelsp. 401
13.3.1 The Filtering Problemp. 402
13.3.2 Bayesian Inference for a General Linear Regression Modelp. 402
13.3.3 Filtering for the Linear Gaussian State Space Modelp. 404
13.3.4 Filtering for Multiprocess Modelsp. 406
13.3.5 Approximate Filtering for Switching Linear Gaussian State Space Modelsp. 406
13.4 Parameter Estimation for Switching State Space Modelsp. 410
13.4.1 The Likelihood Function of a State Space Modelp. 411
13.4.2 Maximum Likelihood Estimationp. 412
13.4.3 Bayesian Inferencep. 412
13.5 Practical Bayesian Estimation Using MCMCp. 415
13.5.1 Various Data Augmentation Schemesp. 416
13.5.2 Sampling the Continuous State Process from the Smoother Densityp. 417
13.5.3 Sampling the Discrete States for a Switching State Space Modelp. 420
13.6 Further Issuesp. 421
13.6.1 Model Specification Uncertainty in Switching State Space Modelingp. 421
13.6.2 Auxiliary Mixture Sampling for Nonlinear and Nonnormal State Space Modelsp. 422
13.7 Illustrative Application to Modeling Exchange Rate Datap. 423
A Appendixp. 431
A.1 Summary of Probability Distributionsp. 431
A.1.1 The Beta Distributionp. 431
A.1.2 The Binomial Distributionp. 432
A.1.3 The Dirichlet Distributionp. 432
A.1.4 The Exponential Distributionp. 433
A.1.5 The F-Distributionp. 433
A.1.6 The Gamma Distributionp. 434
A.1.7 The Geometric Distributionp. 435
A.1.8 The Multinomial Distributionp. 435
A.1.9 The Negative Binomial Distributionp. 435
A.1.10 The Normal Distributionp. 436
A.1.11 The Poisson Distributionp. 437
A.1.12 The Student-t Distributionp. 437
A.1.13 The Uniform Distributionp. 438
A.1.14 The Wishart Distributionp. 438
A.2 Softwarep. 439
Referencesp. 441
Indexp. 481