Cover image for Error-control block codes for communications engineers
Title:
Error-control block codes for communications engineers
Personal Author:
Series:
Artech House telecommunications library
Publication Information:
Norwood, MA : Artech House, 2000
ISBN:
9781580530323

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000003589540 TK5102.96 L43 2000 Open Access Book Book
Searching...
Searching...
30000003589508 TK5102.96 L43 2000 Open Access Book Book
Searching...

On Order

Summary

Summary

A guide to error-control block codes for communications engineers. It examines linear block codes, cyclic codes, BCH codes, RS codes, and multilevel block-coded modulation, and provides valuable simulation results to save the reader time in understanding and using error-control block codes. Featuring real-world applications to such technologies as space and mobile communications and compact disks, as well as many illustrations of technique, this book offers itself as a tool for designing and engineering coded transmissions for reliable digital communications. Areas covered include: decoding on erasure channels with block codes or BCH and RS codes; designing efficient coded modulation schemes for bandwidth-constraint channels; decoding BCH and RS codes with Euclid's algorithm; and generating BCH and RS codes.


Author Notes

L.H. Charles Lee received his Ph.D. in Electrical Engineering from Manchester University (UK) and his B.Sc. in Electrical & Electronic Engineering from Loughborough University (UK).

Lee is a lecturer at MacQuarie University in Sydney, Australia. He is a member of the IEEE and the IEE.

050


Table of Contents

Prefacep. xiii
1 Introduction of Coded Digital Communication Systemsp. 1
1.1 Introductionp. 1
1.2 Elements of a Digital Communication Systemp. 2
1.2.1 Data Source and Data Sinkp. 2
1.2.2 Channel Encoder and Channel Decoderp. 3
1.2.3 Modulator, Transmission Path, and Demodulatorp. 3
1.2.4 Channel Modelsp. 8
1.2.4.1 Discrete Memoryless Channelp. 8
1.2.4.2 Binary Symmetric Channelp. 8
1.2.4.3 Binary Symmetric Erasure Channelp. 9
1.2.4.4 Burst Channelp. 10
1.3 Types of Errors and Error-Control Codesp. 11
Referencesp. 11
2 Introduction to Abstract Algebrap. 13
2.1 Groupsp. 13
2.2 Ringsp. 16
2.2.1 Polynomial Ringsp. 19
2.3 Fieldsp. 20
2.3.1 Polynomials over GF(2)p. 23
2.3.2 Construction of Extension Field GF(2[superscript m]) from GF(2)p. 24
2.3.3 Properties of Extension Field GF(2[superscript m])p. 26
2.4 Implementation of Galois Field Arithmeticp. 30
2.5 Vector Spacesp. 32
2.6 Matricesp. 36
Referencesp. 37
3 Linear Block Codesp. 39
3.1 Basic Concepts and Definitionsp. 40
3.2 Matrix Description of Linear Block Codesp. 42
3.3 Relationship of Minimum Distance to Error Detection and Correctionp. 45
3.4 Syndrome-Former Trellis Representation of Binary Linear Block Codesp. 48
3.5 Examples of Binary Linear Block Codesp. 51
3.5.1 Repetition Codesp. 52
3.5.2 Single-Parity-Check Codesp. 52
3.5.3 Single-Error-Correcting Hamming Codesp. 53
3.5.4 Reed-Muller Codesp. 54
3.6 Modifications of Linear Block Codesp. 56
3.7 Decoding of Linear Block Codesp. 58
3.7.1 Standard Array Decodingp. 58
3.7.2 Syndrome Decodingp. 61
3.7.3 Maximum-Likelihood Decodingp. 63
3.7.3.1 Hard-Decision Decodingp. 65
3.7.3.2 Soft-Decision Decodingp. 68
3.7.4 Maximum-Likelihood Viterbi Algorithm Decodingp. 70
3.7.4.1 Hard-Decision Decodingp. 72
3.7.4.2 Soft-Decision Decodingp. 73
3.8 Correction of Errors and Erasuresp. 76
3.9 Performance of Binary Block Codesp. 79
3.10 Computer Simulation Resultsp. 81
Referencesp. 83
4 Cyclic Codesp. 85
4.1 Introductionp. 85
4.2 Polynomial Description of Cyclic Codesp. 85
4.3 Matrix Description of Cyclic Codesp. 91
4.4 Encoding of Cyclic Codesp. 94
4.5 Decoding of Cyclic Codesp. 95
4.5.1 Syndrome Decodingp. 95
4.5.2 Error-Trapping Decodingp. 103
4.6 Golay Codes and Shortened Cyclic Codesp. 107
4.7 Computer Simulation Resultsp. 108
Referencesp. 110
5 Bose-Chaudhuri-Hocquenghem Codesp. 111
5.1 Introductionp. 111
5.2 General Description of BCH Codesp. 111
5.3 Binary, Narrow-Sense, Primitive BCH Codesp. 112
5.4 Parity-Check Matrix and BCH Bound on [superscript d]minp. 116
5.5 Decoding of Binary BCH Codesp. 119
5.5.1 Berlekamp-Massey Algorithmp. 120
5.5.2 Euclid's Algorithmp. 127
5.6 Correction of Errors and Erasuresp. 131
5.7 Computer Simulation Resultsp. 136
Referencesp. 138
6 Reed-Solomon Codesp. 139
6.1 Introductionp. 139
6.2 Description of Reed-Solomon Codesp. 139
6.3 Decoding of Reed-Solomon Codesp. 143
6.3.1 Berlekamp-Massey Algorithmp. 143
6.3.2 Euclid's Algorithmp. 150
6.4 Correction of Errors and Erasuresp. 151
6.4.1 Berlekamp-Massey Algorithm Decodingp. 151
6.4.2 Euclid's Algorithm Decodingp. 157
6.5 Computer Simulation Resultsp. 161
Referencesp. 163
7 Multilevel Block-Coded Modulationp. 165
7.1 Introductionp. 165
7.2 Encoding and Mapping of Multilevel Block-Coded Modulationp. 170
7.3 Decoding Methodsp. 183
7.3.1 Maximum-Likelihood Decodingp. 183
7.3.2 Multistage Decodingp. 184
7.3.3 Multistage Trellis Decodingp. 186
7.4 Performance of Multilevel Block-Coded Modulation With Multistage Decodingp. 191
7.5 Advantages and Disadvantages of Using Multilevel Block-Coded Modulationp. 192
7.6 Computer Simulation Resultsp. 192
Referencesp. 195
8 Applications of Block Codesp. 199
8.1 Introductionp. 199
8.2 Applications to Space Communicationsp. 199
8.2.1 Voyager Missionsp. 200
8.2.2 Galileo Missionp. 201
8.3 Applications to Mobile Communicationsp. 202
8.3.1 GSM Digital Radio Systemp. 203
8.4 Applications to Compact Discsp. 207
8.4.1 Encodingp. 211
8.4.2 Decodingp. 216
Referencesp. 219
Appendix A Binary Primitive Polynomialsp. 221
Appendix B Galois Field Tablesp. 223
Appendix C Minimal Polynomials of Elements in GF(2[superscript m])p. 229
Appendix D Generator Polynomials of Binary, Narrow-Sense, Primitive BCH Codesp. 231
About the Authorp. 233
Indexp. 235