Cover image for Phase behavior of petroleum reservoir fluids
Title:
Phase behavior of petroleum reservoir fluids
Publication Information:
Boca Raton, FL : CRC/Taylor & Francis, 2007
ISBN:
9780824706944

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010141680 TN871 P424 2007 Open Access Book Book
Searching...
Searching...
30000010235436 TN871 P424 2007 Open Access Book Book
Searching...

On Order

Summary

Summary

Understanding the phase behavior of the various fluids present in a petroleum reservoir is essential for achieving optimal design and cost-effective operations in a petroleum processing plant. Taking advantage of the authors' experience in petroleum processing under challenging conditions, Phase Behavior of Petroleum Reservoir Fluids introduces industry-standard methods for modeling the phase behavior of petroleum reservoir fluids at various stages in the process.

Keeping mathematics to a minimum, the book discusses sampling, characterization, compositional analyses, and equations of state used to simulate various pressure-volume-temperature (PVT) properties of reservoir fluids. The coverage of phase behavior at reservoir conditions includes simulating minimum miscibility pressures and compositional variations depending on depth and temperature gradients. Developed in conjunction with several oil companies using experimental data for real reservoir fluids, the authors present new models for the characterization of heavy undefined hydrocarbons, transport properties, and solids precipitation.

An up-to-date overview of recently developed methods for modern petroleum processing, Phase Behavior of Petroleum Reservoir Fluids presents a streamlined approach for more accurate analyses and better predictions of fluid behavior under variable reservoir conditions.w models for the characterization of heavy undefined hydrocarbons, transport properties, and solids precipitation.

An up-to-date overview of recently developed methods for modern petroleum processing, Phase Behavior of Petroleum Reservoir Fluids presents a streamlined approach for more accurate analyses and better predictions of fluid behavior under variable reservoir conditions.


Table of Contents

Chapter 1 Petroleum Reservoir Fluidsp. 1
1.1 Reservoir Fluid Constituentsp. 1
1.2 Properties of Reservoir Fluid Constituentsp. 1
1.3 Phase Envelopesp. 6
1.4 Classification of Petroleum Reservoir Fluidsp. 7
Referencesp. 11
Chapter 2 Compositional Analysesp. 13
2.1 Analyzing a Bottom Hole Sample by Gas Chromatography (GC)p. 22
2.2 Reservoir Fluid Composition from Separator Samplesp. 26
2.3 Mud-Contaminated Samplesp. 30
2.3.1 Reservoir Fluids to C[subscript 7+] or C[subscript 10+]p. 31
2.3.2 Reservoir Fluids to C[subscript 20+]p. 33
2.3.3 Reservoir Fluids to C[subscript 36+]p. 33
2.4 Quality Control of Reservoir Fluid Samplesp. 35
Referencesp. 39
Chapter 3 PVT Experimentsp. 41
3.1 Constant-Mass Expansion Experimentp. 43
3.2 Constant-Volume Depletion Experimentp. 46
3.3 Differential Liberation Experimentp. 48
3.4 Separator Testp. 54
3.5 Swelling Testp. 57
3.6 Viscosity Experimentp. 58
3.7 Slim Tube Experimentp. 59
3.8 Multiple-Contact Experimentp. 60
Referencesp. 62
Chapter 4 Cubic Equations of Statep. 63
4.1 The van der Waals Equationp. 63
4.2 Redlich-Kwong Equationp. 66
4.3 The Soave-Redlich-Kwong (SRK) Equationp. 68
4.4 Peng-Robinson (PR) Equationp. 71
4.5 Peneloux Volume Correctionp. 73
4.6 Other Cubic Equations of Statep. 76
4.7 Equilibrium Calculationsp. 77
4.8 Nonclassical Mixing Rulesp. 78
4.9 Other Equations of Statep. 78
Referencesp. 78
Chapter 5 C[subscript 7+] Characterizationp. 81
5.1 Classes of Componentsp. 81
5.1.1 Defined Componentsp. 81
5.1.2 C[subscript 7+] Fractionsp. 83
5.1.3 Plus Fractionp. 86
5.2 Binary Interaction Coefficientsp. 92
5.3 Lumpingp. 92
5.4 Delumpingp. 99
5.5 Mixing of Multiple Fluidsp. 100
5.6 Characterizing of Multiple Compositions to the Same Pseudocomponentsp. 103
5.7 Heavy Oil Compositionsp. 106
5.7.1 Heavy Oil Reservoir Fluid Compositionsp. 106
5.7.2 Characterization of Heavy Oil Mixturep. 106
Referencesp. 112
Chapter 6 Flash and Phase Envelope Calculationsp. 115
6.1 Pure Component Vapor Pressures from Cubic Equations of Statep. 116
6.2 Mixture Saturation Points from Cubic Equations of Statep. 118
6.3 Flash Calculationsp. 120
6.3.1 Stability Analysisp. 120
6.3.2 Solving the Flash Equationsp. 125
6.3.3 Multiphase PT-Flashp. 126
6.3.4 Three Phase PT-Flash with a Pure Water Phasep. 131
6.3.5 Other Flash Specificationsp. 133
6.4 Phase Envelope Calculationsp. 134
6.5 Phase Identificationp. 138
Referencesp. 139
Chapter 7 PVT Simulationp. 141
7.1 Constant Mass Expansion (CME)p. 141
7.2 Constant Volume Depletion (CVD)p. 143
7.3 Differential Liberationp. 147
7.4 Separator Testp. 148
7.5 Swelling Testp. 148
7.6 What to Expect from a PVT Simulationp. 160
Chapter 8 Physical Propertiesp. 161
8.1 Densityp. 161
8.2 Enthalpyp. 161
8.3 Internal Energyp. 163
8.4 Entropyp. 163
8.5 Heat Capacityp. 163
8.6 Joule-Thomson Coefficientp. 164
8.7 Velocity of Soundp. 164
8.8 Example Calculationsp. 164
Referencesp. 168
Chapter 9 Regression to Experimental PVT Datap. 169
9.1 Shortcomings of Parameter Regressionp. 169
9.2 Analyzing for Errors in Compositional Datap. 170
9.2.1 Volume Translation Parameterp. 171
9.3 T[subscript c], P[subscript c], and [omega] of C[subscript 7+] Fractionsp. 171
9.4 Regressing on Coefficients in Property Correlationsp. 172
9.5 Object Functions and Weight Factorsp. 172
9.6 Example of Regression for Gas Condensatep. 173
9.7 Tuning on Single Pseudocomponent Propertiesp. 179
9.8 Near-Critical Fluidsp. 181
9.9 Fluids Characterized to the Same Pseudocomponentsp. 185
Referencesp. 196
Chapter 10 Transport Propertiesp. 197
10.1 Viscosityp. 197
10.1.1 Corresponding States Viscosity Modelsp. 199
10.1.2 Adaptation of Corresponding States Viscosity Model to Heavy Oilsp. 206
10.1.3 Lohrenz-Bray-Clark (LBC) Methodp. 207
10.1.4 Other Viscosity Modelsp. 208
10.1.5 Viscosity Data and Simulation Resultsp. 209
10.2 Thermal Conductivityp. 215
10.2.1 Data and Simulation Results for Thermal Conductivityp. 220
10.3 Gas/Oil Surface Tensionp. 220
10.3.1 Model for Interfacial Tensionp. 221
10.3.2 Data and Simulation Results for Interfacial Tenesp. 227
10.4 Diffusion Coefficientsp. 225
Referencesp. 227
Chapter 11 Wax Formationp. 229
11.1 Experimental Studies of Wax Precipitationp. 229
11.2 Thermodynamic Description of Melting of a Pure Componentp. 237
11.3 Modeling of Wax Precipitationp. 243
11.3.1 Activity Coefficient Approachp. 244
11.3.2 Ideal Solid Solution Wax Modelsp. 246
11.4 Wax PT Flash Calculationsp. 251
11.5 Viscosity of Oil-Wax Suspensionsp. 252
11.6 Wax Inhibitorsp. 253
Referencesp. 257
Chapter 12 Asphaltenesp. 259
12.1 Experimental Techniques for Studying Asphaltene Precipitationp. 263
12.1.1 Quantification of Amount of Asphaltenesp. 263
12.1.2 Detection of Asphaltene Onset Pointsp. 263
12.1.2.1 Gravimetric Techniquep. 263
12.1.2.2 Acoustic Resonance Techniquep. 264
12.1.2.3 Light-Scattering Techniquep. 264
12.1.2.4 Filtration and Other Experimental Techniquesp. 265
12.1.3 Experimental Data for Asphaltene Onset Pressuresp. 265
12.2 Asphaltene Modelsp. 266
12.2.1 Models Based on Cubic Equation of Statep. 268
12.2.2 Polymer Solution Modelsp. 270
12.2.3 Thermodynamic-Colloidal Approachp. 273
12.2.4 PC-SAFT Modelp. 274
12.2.5 Other Asphaltene Modelsp. 280
12.2.6 Recommendations with Respect to Asphaltene Modelingp. 281
Referencesp. 281
Chapter 13 Gas Hydratesp. 285
13.1 Types of Hydratesp. 285
13.2 Modeling of Hydrate Formationp. 289
13.3 Hydrate Inhibitorsp. 294
13.4 Hydrate Simulation Resultsp. 295
13.5 Hydrate P/T Flash Calculationsp. 298
13.5.1 Hydrate Fugacitiesp. 300
13.5.2 Flash Simulation Techniquep. 303
Referencesp. 304
Chapter 14 Compositional Variations with Depthp. 307
14.1 Theory of Isothermal Reservoirp. 307
14.1.1 Depth Gradient Calculations for Isothermal Reservoirsp. 309
4.2 Theory of Nonisothermal Reservoirp. 315
14.2.1 Absolute Enthalpiesp. 324
14.2.2 Example: Calculations on Reservoir Fluidsp. 325
Referencesp. 330
Chapter 15 Minimum Miscibility Pressurep. 331
15.1 Three-Component Mixturesp. 331
15.2 MMP of Multicomponent Mixturesp. 336
15.2.1 Tie Line Approachp. 336
15.2.2 Cell-to-Cell Simulationp. 340
Referencesp. 344
Chapter 16 Formation Water and Hydrate Inhibitorsp. 345
16.1 Hydrocarbon-Water Phase Equilibrium Modelsp. 345
16.1.1 Approach of Kabadi and Dannerp. 348
16.1.2 Asymmetric Mixing Rulesp. 350
16.1.3 Huron and Vidal Mixing Rulep. 352
16.1.4 Phase Equilibria for Hydrocarbon-Salt Waterp. 357
16.1.5 Association Modelsp. 358
16.2 Experimental Hydrocarbon-Water Phase Equilibrium Datap. 360
16.3 Water Propertiesp. 363
16.3.1 Viscosity of Water-Inhibitor Mixturesp. 367
16.3.2 Properties of Salt Waterp. 367
16.3.3 Oil-Water Emulsion Viscositiesp. 367
16.4 Phase Envelopes of Hydrocarbon-Aqueous Mixturesp. 368
Referencesp. 370
Chapter 17 Scale Precipitationp. 373
17.1 Criteria for Salt Precipitationp. 373
17.2 Equilibrium Constantsp. 376
17.3 Activity Coefficientsp. 379
17.4 Solution Procedurep. 385
17.5 Example Calculationsp. 389
Referencesp. 391
Appendix A

p. 393

A.1 First and Second Laws of Thermodynamicsp. 393
A.2 Fundamental Thermodynamic Relationsp. 393
A.3 Phase Equilibriump. 394
A.4 Fugacities and Fugacity Coefficientsp. 396
Indexp. 401