Cover image for Correlation spectroscopy of surfaces, thin films, and nanostructures
Title:
Correlation spectroscopy of surfaces, thin films, and nanostructures
Publication Information:
Weinheim : Wiley-VCH, 2004
ISBN:
9783527404773

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010070332 QC173.4.S94 C67 2004 Open Access Book Book
Searching...

On Order

Summary

Summary

Here, leading scientists present an overview of the most modern experimental and theoretical methods for studying electronic correlations on surfaces, in thin films and in nanostructures. In particular, they describe in detail coincidence techniques for studying many-particle correlations while
critically examining the informational content of such processes from a theoretical point viewpoint. Furthermore, the book considers the current state of incorporating many-body effects into theoretical approaches.

Covered topics:

-Auger-electron photoelectron coincidence experiments and theories
-Correlated electron emission from atoms, fullerens, clusters, metals and wide-band gap materials
-Ion coincidence spectroscopies and ion scattering theories from surfaces
-GW and dynamical mean-field approaches
-Many-body effects in electronic and optical response


Author Notes

A. Marini
A. Lahmam-Bennani
F. Bell
R. A. Bartynski, A. K. See, W.-K. Siu, and S. L. Hulbert
R. Feder and H. Gollisch
F. Aryasetiawan, S. Biermann and A. Georges
O. Kidun, N. Fominykh and J. Berakdar
L. Wirtz, M. Dallos, H. Lischka, and J. Burgdörfer
K. Mase, E. Kobayashi, K. Isari
M. Ohno
S. Samarin, O. M. Artamonov, A. D. Sergeant, and J. F. Williams
G. Stefani, R. Gotter, A. Ruocco, F. Offi, F. Da Pieve, A. Verdini, A. Liscio, S. Iacobucci, Hua Yao and R. A. Bartynski
S. M. Thurgate, Z.-T. Jiang, G. van Riessen and C. Creagh
C. Bowles, A. S. Kheifets, V. A. Sashin, M. Vos, E. Weigold, F. Aryasetiawan
H. Winter
J. Kirschner, C. Winkler and J.Berakdar


Table of Contents

F. Aryasetiawan and S. Biermann and A. GeorgesA. MariniO. Kidun and N. Fominykh and J. BerakdarA. Lahmam-BennaniJ. Kirschner and C. Winkler and J. BerakdarS. Samarin and O.M. Artamonov and A.D. Sergeant and J.F. WilliamsC. Bowles and A.S. Kheifets and V.A. Sashin and M. Vos and E. Weigold and F. AryasetiawanF. BellR. Feder and H. GollischL. Wirtz and M. Dallos and H. Lischka and J. BurgdorferH. WinterM. OhnoR.A. Bartynski and A.K. See and W.-K. Siu and S.L. HulbertG. Stefani and R. Gotter and A. Ruocco and F. Offi and F. Da Pieve and A. Verdini and A. Liscio and S. Iacobucci and Hua Yao and R. BartynskiS.M. Thurgate and Z.-T. Jiang and G. van Riessen and C. CreaghK. Mase and E. Kobayashi and K. Isari
Prefacep. XI
List of Contributorsp. XIII
1 A First-Principles Scheme for Calculating the Electronic Structure of Strongly Correlated Materials: GW+DMFTp. 1
1.1 Introductionp. 1
1.2 The GW Approximationp. 4
1.2.1 Theoryp. 4
1.2.2 The GW Approximation in Practicep. 5
1.3 Dynamical Mean Field Theoryp. 7
1.3.1 DMFT in Practicep. 8
1.4 GW+DMFTp. 9
1.4.1 Simplified Implementation of GW+DMFT and Application to Ferromagnetic Nickelp. 12
1.5 Conclusionsp. 13
Referencesp. 15
2 A Many-body Approach to the Electronic and Optical Properties of Copper and Silverp. 17
2.1 Introductionp. 17
2.2 Quasiparticle Electronic Structure of Copperp. 18
2.3 The Plasmon Resonance of Silverp. 21
2.4 Dynamical Excitonic Effects in Metalsp. 25
2.5 Conclusionsp. 30
Referencesp. 30
3 Correlation Spectroscopy of Nano-size Materialsp. 32
3.1 Introductionp. 32
3.2 Generalitiesp. 33
3.3 Excitations in Finite Systems: Role of the Electron-Electron Interactionp. 34
3.3.1 Formal Developmentp. 35
3.4 Results and Discussionp. 37
3.5 Conclusionsp. 40
Referencesp. 41
4 Electron-Electron Coincidence Studies on Atomic Targets: A Review of (e,2e) and (e,3e) Experimentsp. 42
4.1 Introductionp. 42
4.2 Structure Studiesp. 43
4.3 Dynamics Studiesp. 45
4.3.1 The Optical Limitp. 45
4.3.2 Dynamics Studies at Intermediate Energies and Intermediate Momentum Transferp. 47
4.4 Conclusionp. 56
Referencesp. 56
5 Studying the Details of the Electron-Electron Interaction in Solids and Surfacesp. 58
5.1 Introductionp. 58
5.2 General Considerationsp. 58
5.3 Results and Interpretationsp. 59
5.4 Conclusionsp. 66
Referencesp. 66
6 Two-Electron Spectroscopy Versus Single-Electron Spectroscopy for Studying Secondary Emission from Surfacesp. 68
6.1 Introductionp. 68
6.2 Experimental Details of the Time-of-Flight (e,2e) Spectroscopy in Reflection Modep. 70
6.2.1 Experimental Set-Upp. 70
6.2.2 Combination of Time-of-Flight Energy Measurements and Coincidence Techniquep. 71
6.2.3 Data Processingp. 71
6.3 Experimental Results and Discussionp. 72
6.3.1 LiF Film on Si(100)p. 72
6.3.2 Single Crystal of W(110)p. 74
6.3.3 Single Crystal of Si(001)p. 79
6.4 Conclusionsp. 80
Referencesp. 81
7 EMS Measurement of the Valence Spectral Function of Silicon--A Test of Many-body Theoryp. 83
7.1 Introductionp. 83
7.2 Experimental Detailsp. 85
7.3 Theoryp. 88
7.3.1 Independent Particle Approximationp. 88
7.3.2 Electron Correlation Modelsp. 89
7.4 Results and Discussionsp. 90
7.4.1 Band Structurep. 90
7.4.2 Diffraction Effectsp. 95
7.4.3 Many-body Effectsp. 97
7.5 Conclusionsp. 101
Referencesp. 102
8 Recent Results from ([gamma], e[gamma]) and Compton Spectroscopyp. 105
8.1 Introductionp. 105
8.2 Experimentp. 106
8.3 Results and Discussionp. 107
8.3.1 Graphitep. 107
8.3.2 Fullerenep. 109
8.3.3 Cu-Ni Alloyp. 110
8.4 Lifetime Effects in Compton Scatteringp. 112
8.5 Summaryp. 115
Referencesp. 116
9 Theory of (e,2e) Spectroscopy from Ferromagnetic Surfacesp. 118
9.1 Introductionp. 118
9.2 Concepts and Formalismp. 119
9.3 Spin and Spatial Selection Rulesp. 120
9.4 Numerical Results for Fe(110)p. 124
Referencesp. 129
10 Ab-initio Calculations of Charge Exchange in Ion-surface Collisions: An Embedded-cluster Approachp. 130
10.1 Introductionp. 130
10.2 Convergence of the Density of States as a Function of Cluster Sizep. 132
10.3 Going beyond Hartree-Fockp. 133
10.4 Convergence of Potential Energy Curves as a Function of Cluster Sizep. 137
10.5 Conclusionsp. 141
Referencesp. 142
11 Coincident Studies on Electronic Interaction Mechanisms during Scattering of Fast Atoms from a LiF(001) Surfacep. 144
11.1 Introductionp. 144
11.2 Experimental Developmentsp. 145
11.2.1 Energy Loss Spectroscopy via Time-of-Flightp. 147
11.2.2 Electron Number Spectrap. 147
11.3 Coincident TOF and Electron Number Spectrap. 149
11.3.1 Studies on Near-Threshold Behaviorp. 151
11.4 Model for Electronic Excitation and Capture Processes during Scattering of Atoms from Insulator Surfacesp. 153
11.5 Summary and Conclusionsp. 157
Referencesp. 158
12 Many-body Effects in Auger-Photoelectron Coincidence Spectroscopyp. 159
12.1 Introductionp. 159
12.2 APECS Spectrump. 160
12.3 Shakeup/down and Coincidence Photoelectron Spectrump. 163
12.4 Coincidence L[subscript 3] Photoelectron Line of Cu Metalp. 170
12.5 Concluding Remarksp. 172
Referencesp. 172
13 Auger-Photoelectron Coincidence Spectroscopy (APECS) of Transition Metal Compoundsp. 174
13.1 Introductionp. 174
13.2 Experimental Aspectsp. 175
13.3 Results and Discussionp. 176
13.4 Conclusionsp. 181
Referencesp. 182
14 Relevance of the Core Hole Alignment to Auger-Photoelectron Pair Angular Distributions in Solidsp. 183
14.1 Introductionp. 183
14.2 AR-APECS Two Step Modelp. 184
14.2.1 Atomic Core Ionization and Relaxationp. 185
14.2.2 Diffraction from Crystal Latticep. 186
14.3 Experimental Resultsp. 188
14.3.1 Angular Discriminationp. 189
14.3.2 Energy Discriminationp. 191
14.3.3 Surface Sensitivityp. 193
14.4 Conclusionsp. 195
Referencesp. 196
15 Auger-Photoelectron Coincidence Spectroscopy Studies from Surfacesp. 197
15.1 Introductionp. 197
15.2 APECS Experimentsp. 197
15.3 Applicationsp. 199
15.3.1 Broadening of Cu 2p[subscript 3/2]p. 199
15.3.2 Broadening of Ag 3d[subscript 5/2]p. 201
15.3.3 Disorder Broadeningp. 201
15.4 Conclusionsp. 204
Referencesp. 204
16 Development of New Apparatus for Electron-Polar-Angle-Resolved-Ion Coincidence Spectroscopy and Auger-Photoelectron Coincidence Spectroscopyp. 206
16.1 Introductionp. 206
16.2 EICO Analyzer Using a Coaxially Symmetric Electron Energy Analyzer and a Miniature Time-of-Flight Ion Mass Spectrometer (TOF-MS)p. 208
16.2.1 Coaxially Symmetric Electron Energy Analyzer [46]p. 208
16.2.2 Miniature Time-of-Flight Ion Mass Spectrometer (TOF-MS) [47]p. 210
16.2.3 EICO Apparatus Using a Coaxially Symmetric Mirror Analyzer and a Miniature TOF-MS [14]p. 210
16.3 EICO Analyzer Using a Coaxially Symmetric Mirror Analyzer and a Miniature Polar-Angle-Resolved TOF-MS [47]p. 213
16.3.1 Miniature Polar-Angle-Resolved TOF-MS with Three Concentric Anodes [47]p. 213
16.3.2 Electron-Polar-Angle-Resolved-Ion Coincidence Apparatus [47]p. 214
16.4 APECS Apparatus Using a Coaxially Symmetric Mirror Analyzer and a Miniature CMAp. 216
16.4.1 Introductionp. 216
16.4.2 Miniature CMA [56]p. 217
16.4.3 New APECS Apparatus [56]p. 218
16.4.4 Application to Auger-Photoelectron Coincidence Spectroscopy [56]p. 219
16.5 Conclusionsp. 220
Referencesp. 223
Appendix
Color Figuresp. 226
Indexp. 235