Cover image for Energy localisation and transfer
Title:
Energy localisation and transfer
Series:
Advanced series in nonlinear dynamics ; 22
Publication Information:
Singapore : World Scientific, 2004
ISBN:
9789812387424

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000004726281 QC175.23 E53 2004 Open Access Book Book
Searching...

On Order

Summary

Summary

This book provides an introduction to localised excitations in spatially discrete systems, from the experimental, numerical and mathematical points of view. Also known as discrete breathers, nonlinear lattice excitations and intrinsic localised modes, these are spatially localised time periodic motions in networks of dynamical units. Examples of such networks are molecular crystals, biomolecules, and arrays of Josephson superconducting junctions. The book also addresses the formation of discrete breathers and their potential role in energy transfer in such systems.


Table of Contents

Prefacep. v
Chapter 1 Computational Studies of Discrete Breathersp. 1
1 Introductionp. 1
2 A bit on numerics of solving ODEsp. 6
3 Observing and analyzing breathers in numerical runsp. 10
3.1 Targeted initial conditionsp. 10
3.2 Breathers in transient processesp. 17
3.3 Breathers in thermal equilibriump. 23
4 Obtaining breathers up to machine precision: Part Ip. 25
4.1 Method No.1 - designing a mapp. 26
4.2 Method No.2 - saddles on the rim with space-time separationp. 30
4.3 Method No.3 - homoclinic orbits with time-space separationp. 31
5 Obtaining breathers up to machine precision: Part IIp. 33
5.1 Method No.4 - Newton in phase spacep. 35
5.2 Method No.5 - steepest descent in phase spacep. 37
5.3 Symmetriesp. 38
6 Perturbing breathersp. 39
6.1 Linear stability analysisp. 40
6.2 Plane wave scatteringp. 43
7 Breathers in dissipative systemsp. 47
7.1 Obtaining dissipative breathersp. 48
7.2 Perturbing dissipative breathersp. 49
8 Computing quantum breathersp. 51
8.1 The dimerp. 54
8.2 The trimerp. 58
8.3 Quantum roto-breathersp. 65
9 Some applications instead of conclusionsp. 66
Acknowledgmentsp. 68
Referencesp. 68
Chapter 2 Vibrational Spectroscopy and Quantum Localizationp. 73
1 Introductionp. 74
1.1 Nonlinear dynamics and energy localizationp. 74
1.2 Nonlinear dynamics and vibrational spectroscopyp. 76
2 Vibrational spectroscopy techniquesp. 78
2.1 Some definitionsp. 78
2.1.1 Spatial resolutionp. 80
2.1.2 Coherence lengthp. 80
2.1.3 Energy localizationp. 81
2.1.4 The Franck-Condon principlep. 81
2.2 Optical techniquesp. 82
2.3 Neutron scattering techniquesp. 84
2.3.1 Nuclear cross-sectionsp. 85
2.3.2 Coherent versus incoherent scatteringp. 85
2.3.3 Contrastp. 86
2.3.4 Penetration depthp. 86
2.3.5 Wavelengthp. 86
2.3.6 Scattering functionp. 87
2.4 A (not so) simple examplep. 89
3 Molecular vibrationsp. 92
3.1 The harmonic approximation: Normal modesp. 92
3.2 Anharmonicityp. 93
3.3 Local modesp. 93
3.3.1 Diatomic moleculesp. 94
3.3.2 Polyatomic moleculesp. 95
3.4 Local versus normal mode separabilityp. 96
3.4.1 Zeroth-order descriptions of the nuclear Hamiltonianp. 98
3.4.2 Breakdown of the zeroth-order descriptionsp. 99
3.5 The water moleculep. 100
3.5.1 The normal mode modelp. 100
3.5.2 The local mode modelp. 101
3.5.3 Vibrational wave functions and spectrump. 102
3.5.4 Eigenstates and eigenfunctionsp. 103
3.6 The algebraic force-field Hamiltonianp. 104
3.7 Other moleculesp. 107
3.8 Local modes and energy localizationp. 109
4 Crystalsp. 110
4.1 The harmonic approximation: Phononsp. 111
4.1.1 The linear single-particle chainp. 113
4.1.2 The linear di-atom chainp. 113
4.2 Phonon-phonon interactionp. 113
4.3 Phonon-electron interactionp. 116
4.4 Local modesp. 119
4.5 Nonlinear dynamicsp. 123
4.5.1 Quantum rotational dynamics for infinite chains of coupled rotorsp. 123
4.5.2 Strong vibrational coupling: Hydrogen bondingp. 131
4.5.3 Davydov's modelp. 139
5 Conclusionp. 141
5.1 Vibrational spectroscopy and nonlinear dynamicsp. 141
5.2 Optical vibrational spectroscopy and energy localizationp. 141
5.2.1 Moleculesp. 142
5.2.2 Crystalsp. 142
5.3 Inelastic neutron scattering spectroscopy of solitonsp. 142
5.4 Vibrational spectroscopy and dynamical modelsp. 143
Referencesp. 143
Chapter 3 Slow Manifoldsp. 149
1 Introductionp. 149
2 Normally Hyperbolic versus General Casep. 152
3 Hamiltonian versus General Casep. 154
4 Improving a slow manifoldp. 160
5 Symplectic slow manifoldsp. 162
6 The Methods of Collective Coordinatesp. 169
7 Velocity Splittingp. 171
8 Poisson slow manifoldsp. 173
9 Slow manifolds with Internal Oscillationp. 173
10 Internal oscillation: U(1)-symmetric Hamiltoniansp. 176
11 Internal oscillation: General Hamiltoniansp. 181
12 Bounds on time evolutionp. 185
13 Weak Dampingp. 187
Acknowledgementsp. 187
Referencesp. 188
Chapter 4 Localized Excitations in Josephson Arrays. Part I: Theory and Modelingp. 193
1 Introductionp. 193
2 The single Josephson junctionp. 194
2.1 Josephson effectp. 194
2.2 Superconducting tunnel junctionsp. 194
2.3 Long Josephson junctionsp. 199
2.4 Quantum effects in Josephson junctionsp. 200
3 Modeling Josephson arraysp. 201
3.1 Series arraysp. 203
3.2 rf-SQUIDp. 204
3.3 dc-SQUIDp. 204
3.4 JJ parallel arrayp. 205
3.5 JJ ladder arrayp. 206
3.6 2D arraysp. 207
4 Localized excitations in Josephson arrays: Vortices and kinksp. 209
4.1 Vortices in 2D arraysp. 209
4.1.1 Single vortex properties at zero temperaturep. 210
4.1.2 Array properties at non-zero temperaturesp. 211
4.2 2D arrays with small junctionsp. 211
4.3 Kinks in parallel arraysp. 212
4.3.1 Fluxon ratchet potentialsp. 215
4.4 Charge solitons in 1D arraysp. 217
5 Discrete breathers in Josephson arraysp. 217
5.1 Oscillobreather in an ac biased parallel arrayp. 219
5.2 Rotobreathers in Josephson arraysp. 220
5.3 The ladder arrayp. 220
5.4 Rotobreathers in a dc biased ladderp. 221
5.4.1 Analysis of the breather solutions using a dc modelp. 225
5.4.2 Simulationsp. 226
5.4.3 Breather existence diagramsp. 229
5.4.4 Different [lambda] regimesp. 233
5.4.5 Breather-vortex collision in the Josephson ladderp. 236
5.5 Single-plaquette arraysp. 238
5.6 DBs in two-dimensional Josephson junction arraysp. 238
Acknowledgmentsp. 240
Referencesp. 241
Chapter 5 Localized Excitations in Josephson Arrays. Part II: Experimentsp. 247
1 Introductionp. 247
2 Fabrication of Josephson arraysp. 248
2.1 Materialsp. 249
2.1.1 Low-temperature superconducting technologyp. 249
2.1.2 High-temperature superconducting technologyp. 251
2.2 Layoutp. 252
2.3 Junction parametersp. 254
3 Measurement techniquesp. 255
3.1 Generation of localized excitationsp. 256
3.2 Hot probe imaging techniquesp. 257
4 Experiments in the classical regimep. 259
4.1 Fluxons in Josephson arraysp. 259
4.1.1 Parallel 1-D arraysp. 259
4.1.2 Laddersp. 261
4.1.3 2-D arraysp. 261
4.2 Rotobreathers in Josephson laddersp. 262
4.3 Meandered states in 2-D Josephson arraysp. 264
5 Experiments in the quantum regimep. 265
5.1 Single Josephson junctionp. 265
5.2 Coupled Josephson junctionsp. 268
6 Conclusions and outlookp. 269
Acknowledgmentsp. 269
Referencesp. 270
Chapter 6 Protein Functional Dynamics: Computational Approachesp. 273
1 Introductionp. 273
2 Protein structurep. 273
3 Energetics of protein stabilisationp. 275
4 Protein foldingp. 276
4.1 On-lattice modelsp. 277
4.2 Off-lattice modelsp. 283
4.3 More detailed modelsp. 285
5 Protein conformational changesp. 285
5.1 Functional motionsp. 285
5.2 Collective motionsp. 286
5.3 Low-frequency normal modesp. 289
5.3.1 Normal mode analysisp. 289
5.3.2 The RTB approximationp. 291
5.3.3 Comparison with crystallographic B-factorsp. 292
5.3.4 Comparison with conformational changesp. 293
5.3.5 Simplified potentialsp. 296
6 Dissipation of energy in proteinsp. 297
7 Conclusionp. 298
Acknowledgmentsp. 299
Referencesp. 299
Chapter 7 Nonlinear Vibrational Spectroscopy: A Method to Study Vibrational Self-Trappingp. 301
1 Introduction: The Story of Davidov's Solitonp. 301
2 Nonlinear Spectroscopy of Vibrational Modesp. 303
2.1 Harmonic and Anharmonic Potential Energy Surfacesp. 303
2.2 Linear and Nonlinear Spectroscopyp. 305
3 Proteins and Vibrational Excitonsp. 307
3.1 Theoretical Backgroundp. 307
3.2 Experimental Observationp. 309
4 Hydrogen Bonds and Anharmonicityp. 310
4.1 Theoretical Backgroundp. 310
4.2 Experimental Observationp. 312
5 Vibrational Self-Trappingp. 314
5.1 Theoretical Backgroundp. 314
5.2 Experimental Observationp. 315
6 Conclusion and Outlookp. 319
Acknowledgmentsp. 320
Appendix Feynman Diagram Description of Linear and Nonlinear Spectroscopyp. 321
Referencesp. 323
Chapter 8 Breathers in Biomolecules?p. 325
1 Introductionp. 325
2 Classical vibrationsp. 326
2.1 Local modes in small moleculesp. 326
2.2 Local modes in large moleculesp. 327
2.3 Local modes in crystalsp. 329
2.4 Localisation of vibrations and chemical reaction ratesp. 330
2.5 Fluctuational opening in DNAp. 331
3 Quantum self-trappingp. 333
4 Discussionp. 337
Acknowledgmentsp. 339
Referencesp. 339
Chapter 9 Statistical Physics of Localized Vibrationsp. 341
1 Introduction/Outlookp. 341
2 Thermal DNA denaturation: A domain-wall driven transition?p. 343
3 ILMs in DNA dynamics?p. 345
4 Helix formation and melting in polypeptidesp. 348
4.1 Definitions, Notationp. 348
4.2 Thermodynamicsp. 350
Acknowledgmentsp. 351
Referencesp. 352
Chapter 10 Localization and Targeted Transfer of Atomic-Scale Nonlinear Excitations: Perspectives for Applicationsp. 355
1 Introductionp. 355
2 Discrete Breathersp. 359
2.1 DBs in periodic latticesp. 360
2.2 DBs in random systemsp. 371
3 Targeted energy transferp. 376
3.1 Nonlinear resonancep. 378
3.2 Targeted energy transfer in a nonlinear dimerp. 380
3.3 Targeted energy transfer through discrete breathersp. 383
4 Ultrafast Electron Transferp. 387
4.1 Nonlinear dynamical model for ETp. 390
4.2 ET in the Dimerp. 394
4.3 Catalytic ET in a trimerp. 395
4.4 The example of bacterial photosynthetic reaction centerp. 396
5 Conclusions and perspectivesp. 400
Acknowledgmentsp. 402
Referencesp. 402
Indexp. 405