Cover image for Sinusoids : theory and technological applications
Title:
Sinusoids : theory and technological applications
Personal Author:
Series:
Monographs and research notes in mathematics
Publication Information:
Boca Raton ; London ; New York : CRC Press : Taylor & Francis Group, 2015
Physical Description:
xxxii, 487 pages : illustrations ; 24 cm.
ISBN:
9781482221060

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010341254 QA403.5 K98 2015 Open Access Book Book
Searching...

On Order

Summary

Summary

A Complete Treatment of Current Research Topics in Fourier Transforms and Sinusoids

Sinusoids: Theory and Technological Applications explains how sinusoids and Fourier transforms are used in a variety of application areas, including signal processing, GPS, optics, x-ray crystallography, radioastronomy, poetry and music as sound waves, and the medical sciences. With more than 200 illustrations, the book discusses electromagnetic force and sychrotron radiation comprising all kinds of waves, including gamma rays, x-rays, UV rays, visible light rays, infrared, microwaves, and radio waves. It also covers topics of common interest, such as quasars, pulsars, the Big Bang theory, Olbers' paradox, black holes, Mars mission, and SETI.

The book begins by describing sinusoids--which are periodic sine or cosine functions--using well-known examples from wave theory, including traveling and standing waves, continuous musical rhythms, and the human liver. It next discusses the Fourier series and transform in both continuous and discrete cases and analyzes the Dirichlet kernel and Gibbs phenomenon. The author shows how invertibility and periodicity of Fourier transforms are used in the development of signals and filters, addresses the general concept of communication systems, and explains the functioning of a GPS receiver. The author then covers the theory of Fourier optics, synchrotron light and x-ray diffraction, the mathematics of radioastronomy, and mathematical structures in poetry and music. The book concludes with a focus on tomography, exploring different types of procedures and modern advances. The appendices make the book as self-contained as possible.


Author Notes

Prem K. Kythe is a Professor Emeritus of Mathematics at the University of New Orleans. He is the author/coauthor of ten books and author of 46 research papers. His research interests encompass the fields of complex analysis, continuum mechanics, and wave theory, including boundary element methods, finite element methods, conformal mappings, PDEs and boundary value problems, linear integral equations, computation integration, fundamental solutions of differential operators, Green's functions, and coding theory.


Table of Contents

Prefacep. xv
Notations, Definitions, and Acronymsp. xix
1 Introductionp. 1
1.1 Definitionsp. 1
1.2 Continuous Sinusoidsp. 3
1.3 Discrete Sinusoidsp. 9
1.4 Harmonic Seriesp. 10
1.5 Traveling and Standing Wavesp. 10
1.5.1 Vibrating Stringp. 15
1.6 Wave Propagation and Dispersionp. 19
1.6.1 Heat Wavesp. 24
1.7 Applications of Sinusoidsp. 25
1.8 Historical Notesp. 26
2 Fourier Seriesp. 31
2.1 Orthogonalityp. 31
2.2 Completeness and Uniform Convergencep. 35
2.3 Fourier Seriesp. 36
2.3.1 Some Special Casesp. 38
2.3.2 Amplitude and Phase Formp. 38
2.3.3 Fourier Sine Seriesp. 40
2.3.4 Fourier Cosine Seriesp. 41
2.3.5 Uniform Convergencep. 41
2.4 Dirac Delta Functionp. 42
2.5 Delta Function and Dirichlet Kernelp. 45
2.6 Gibbs Phenomenonp. 47
2.6.1 Sigma-Approximationp. 48
2.7 Square Waveformp. 50
2.8 Examples of Fourier Seriesp. 52
2.9 Complex Fourier Coefficientsp. 53
3 Fourier Transformsp. 57
3.1 Definitionsp. 57
3.1.1 Fourier Integralp. 59
3.1.2 Properties of Fourier Transformsp. 59
3.1.3 Fourier Transforms of the Derivatives of a Functionp. 60
3.1.4 Convolution Theorems for Fourier Transformp. 61
3.1.5 Fourier Transforms of Some Typical Signalsp. 63
3.1.6 Poisson's Summation Formulap. 67
3.1.7 Sine and Cosine Transformsp. 68
3.2 Finite Fourier Transformsp. 70
3.2.1 Propertiesp. 72
3.2.2 Finite Fourier Transforms of Derivativesp. 72
3.2.3 Periodic Extensionsp. 72
3.2.4 Convolutionp. 73
3.2.5 Differentiation with Respect to a Parameterp. 74
3.3 Fourier Transforms of Two Variablesp. 75
3.3.1 Local Spatial Frequencyp. 75
3.3.2 Fourier Transform of Signalsp. 77
3.3.3 Circle Functionp. 78
3.3.4 Amplitude Transmittance Functionp. 79
3.3.5 Convolutionp. 80
3.3.6 Symmetry of Fourier Transformp. 81
3.3.7 Image Rotationp. 81
3.3.8 Other Properties of 2-D Fourier Transformp. 81
3.3.9 Gratingp. 84
3.4 Fourier Transforms: Discrete Casep. 85
3.4.1 Discrete Signalp. 87
3.5 Fast Fourier Transformp. 90
3.5.1 Radix-2 Algorithm for FFTp. 91
3.6 Multiple Fourier Transformp. 92
3.7 Fourier Slice Theoremp. 93
4 Signals and Filtersp. 97
4.1 Description of Signalsp. 97
4.2 Convolution and Signalsp. 100
4.3 Theory of Signalsp. 103
4.3.1 Types of Signalsp. 103
4.3.2 Continuous Deterministic Signalsp. 104
4.3.3 Discrete Deterministic Signalsp. 104
4.3.4 Bandpass Signalsp. 108
4.3.5 Continuous-Time Domainp. 109
4.3.6 Linear and Nonlinear Systemsp. 110
4.3.7 Time-Invariant and Time-Varying Systemsp. 110
4.3.8 Causal and Noncausal Systemsp. 110
4.3.9 Linear Time-Invariant Systemsp. 111
4.4 Random Signalsp. 112
4.4.1 Discrete Casep. 113
4.4.2 Random Sequence of Pulsesp. 113
4.4.3 Samplingp. 114
4.4.4 Amplitudep. 115
4.4.5 Frequencyp. 117
4.4.6 Superposition of Signalsp. 118
4.4.7 Periodic Signalsp. 119
4.5 Discrete Fourier Analysisp. 120
4.5.1 Fourier Series of Elementary Waveformsp. 123
4.6 Fourier Resynthesis: Discrete Casep. 127
4.6.1 Additive Synthesisp. 128
4.6.2 Time and Phase Shiftsp. 129
4.6.3 Nonperiodic Signalsp. 132
4.7 Theory of Filtersp. 133
4.7.1 Delay Networkp. 134
4.7.2 Classification of Filtersp. 136
4.7.3 Properties and Usesp. 148
5 Communication Systemsp. 151
5.1 Communication Channelsp. 151
5.2 Noisep. 152
5.3 Quantizationp. 154
5.4 Digital Signalsp. 159
5.4.1 Amplitude and Phase Characteristicp. 160
5.5 Interferencep. 161
5.5.1 Light Sourcesp. 163
5.5.2 Laser Beamp. 163
5.5.3 Astronomical Interferometryp. 163
5.5.4 Acoustic Interferometryp. 164
5.5.5 Quantum Interferencep. 164
5.6 Nonlinear Systemsp. 165
5.7 SDR Systemp. 165
5.8 Data Transmissionp. 167
5.9 Space Explorationp. 168
5.9.1 Error-Correcting Codesp. 169
5.9.2 Combustionp. 173
5.9.3 Combustion Instabilityp. 173
5.10 Mars Project and Beyondp. 174
5.10.1 SETIp. 179
6 Global Positioning Systemp. 181
6.1 GPS Structurep. 181
6.1.1 Bancroft's Methodp. 182
6.1.2 Trilateration Methodp. 184
6.1.3 GPS Segmentsp. 187
6.1.4 Navigationp. 192
6.1.5 Accuracyp. 193
6.1.6 Applicationsp. 194
6.2 CDMA Principlep. 195
6.2.1 CDMA Signalsp. 197
6.2.2 Differential GPS (DGPS) Techniquesp. 197
6.2.3 GPS Error Sourcesp. 198
6.3 C/A Code Architecturep. 200
6.3.1 Gold Codesp. 201
6.3.2 C/A Code and Data Formatp. 204
6.3.3 GPS Signal Waveform: L1 Channelp. 205
6.3.4 DSSSp. 205
6.3.5 BPSKp. 206
6.3.6 GPS Frequencyp. 206
6.3.7 Navigationp. 209
6.3.8 GPS Signal Structurep. 209
6.3.9 C/A Code Acquisitionp. 211
6.3.10 Serial Search Algorithmp. 212
6.3.11 Time Domain Correlationp. 213
6.3.12 Domain Correlationp. 216
6.3.13 Delayed Signalp. 219
6.4 P Code Architecturep. 221
6.4.1 P Code Acquisitionp. 226
6.4.2 P Code Spectral Densityp. 228
6.5 Computational Aspectsp. 229
7 Fourier Opticsp. 231
7.1 Physical Opticsp. 231
7.1.1 Abbe Sine Conditionp. 233
7.2 Scalar Diffraction Theoryp. 234
7.2.1 Helmholtz Equationp. 236
7.2.2 Helmholtz-Kirchhoff Integral Theoremp. 236
7.2.3 Fresnel-Kirchhoff Diffractionp. 239
7.2.4 Rayleigh-Sommerfeld Diffractionp. 240
7.2.5 Fresnel Diffractionp. 244
7.2.6 Huygens-Fresnel Principlep. 244
7.2.7 Fresnel Approximationp. 245
7.2.8 Fraunhofer Diffractionp. 251
7.3 Quasi-Opticsp. 254
7.4 Electromagnetic Spectrump. 259
7.5 Electromagnetic Radiationp. 264
7.6 Adaptive Additive Algorithmp. 265
8 X-Ray Crystallographyp. 267
8.1 Historical Notesp. 267
8.2 Bragg's Lawp. 267
8.3 X-Ray Diffractionp. 270
8.3.1 Electron Distributionp. 271
8.4 Generation of X-Raysp. 273
8.5 DNAp. 274
8.6 Hydrogen Atomp. 278
8.6.1 Hydrogen Spectrump. 283
8.7 Units of Measurementp. 286
8.7.1 Ultrashort Pulsep. 288
8.8 Laserp. 289
8.8.1 Luminescencep. 293
9 Radioastronomyp. 297
9.1 Historical Notesp. 297
9.2 Synchrotron Radiationp. 298
9.3 Radioastronomyp. 301
9.4 Radio Interferometryp. 302
9.5 Aperture Synthesisp. 306
9.6 Big Bang, Quasars, and Pulsarsp. 308
9.6.1 Quasarsp. 309
9.6.2 Pulsarsp. 312
9.6.3 Olbers Paradoxp. 313
9.7 Black Holesp. 315
9.7.1 A Mathematical Theoryp. 316
9.7.2 Black Hole Solutionsp. 316
10 Acoustics, Poetry, and Musicp. 321
10.1 Introductionp. 321
10.2 Harmonic Analysisp. 323
10.3 Huygens Principle Revisitedp. 325
10.4 Modulationp. 326
10.4.1 Audio Signalsp. 327
10.5 Rhythm and Musicp. 329
10.5.1 Pitch, Loudness, and Timbrep. 329
10.5.2 Music Barsp. 332
10.5.3 Timbrep. 335
10.5.4 Harmonicsp. 336
10.5.5 Musical Scalesp. 340
10.5.6 Tempered Scalep. 341
10.5.7 Resonancep. 343
10.6 Drumsp. 344
10.6.1 Vibrating Rectangular Membranep. 346
10.6.2 Frequency Modulationp. 347
10.7 Music Synthesizersp. 349
11 Computerized Axial Tomographyp. 351
11.1 Introductionp. 351
11.2 Types of Tomographyp. 354
11.2.1 Straight-Ray Imagingp. 354
11.2.2 Series Expansion Methodp. 354
11.2.3 Sinogramp. 355
11.2.4 B-Scan Imagingp. 356
11.2.5 Reflection Tomographyp. 359
11.3 Magnetic Resonance Imagingp. 363
11.3.1 Nonlocality of Radon Inversionp. 368
11.4 Modern Tomographyp. 369
11.4.1 Nuclear Medicinep. 371
A Tables of Fourier Transformsp. 373
A.1 Complex Fourier Transform Pairsp. 373
A.2 Fourier Cosine Transform Pairsp. 375
A.3 Fourier Sine Transform Pairsp. 376
B Hilbert Transformsp. 377
B.1 Hilbert Transformsp. 377
B.2 Inverse Hilbert Transformsp. 379
B.3 Discrete Hilbert Transformsp. 380
C Radon Transformsp. 383
C.1 Radon Transformp. 383
C.2 Inverse Radon Transformp. 385
C.3 2-D Radon Transformp. 387
C.4 Discrete Radon Transformp. 388
C.4.1 DR.T and Sinogramp. 390
C.4.2 Inverse DRT: Continuous Casep. 391
C.4.3 IDRT as Approximate IFTp. 392
C.4.4 Relationship with Fourier Transformp. 393
C.4.5 Tomographic Reconstruction Methodsp. 394
C.4.6 Practical Issuesp. 395
D Maxwell's Equations and Solitonsp. 397
D.1 Maxwell's Equationsp. 397
D.2 sine-Gordon Equationp. 399
D.3 K-dV Equationp. 405
D.4 Nonlinear Schrödinger Equationp. 407
E Modulationp. 409
E.1 Definitionp. 409
E.2 Phase Modulation and FMp. 411
E.3 Waveshapingp. 413
E.4 BPSK Modulationp. 418
F Boolean and Bitwise Operationsp. 419
G Galois Fieldp. 421
G.1 Galois Field Arithmeticp. 421
G.2 LFSR Encoderp. 424
H GPS Geometryp. 429
H.1 Earthp. 429
H.2 User Locationp. 430
H.3 Altitudep. 431
H.4 Sidereal Dayp. 433
H.5 Kepler's Lawsp. 433
I Gold Codesp. 435
I.1 Definitionp. 435
I.2 m-Sequencesp. 436
I.3 Gold Code Generatorp. 438
J Doppler Effectp. 439
K Bessel Functionsp. 443
K.1 Bessel functions of the First Kindp. 443
K.2 Modified Bessel Functionsp. 444
K.3 Airy Functionsp. 445
K.4 Hankel Transformsp. 445
L Heisenberg's Uncertainty Principlep. 449
M Classical Latin Prosodyp. 453
M.1 Rhythm and Meterp. 453
M.2 Feetp. 455
M.3 List of Feetp. 456
M.4 Division of Rhythmsp. 458
M.5 Roman Concept of Music and Dramap. 460
Bibliographyp. 463
Indexp. 479