Skip to:Content
|
Bottom
Cover image for Railroad vehicle dynamics : a computational approach
Title:
Railroad vehicle dynamics : a computational approach
Personal Author:
Publication Information:
Boca Raton : CRC Press, 2008
Physical Description:
343 p. : ill. ; 25 cm.
ISBN:
9781420045819

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010175433 TF550 S52 2008 Open Access Book Book
Searching...

On Order

Summary

Summary

The methods of computational mechanics have been used extensively in modeling many physical systems. The use of multibody-system techniques, in particular, has been applied successfully in the study of various, fundamentally different applications.

Railroad Vehicle Dynamics: A Computational Approach presents a computational multibody-system approach that can be used to develop complex models of railroad vehicle systems. The book examines several computational multibody-system formulations and discusses their computer implementation. The computational algorithms based on these general formulations can be used to develop general- and special-purpose railroad vehicle computer programs for use in the analysis of railroad vehicle systems, including the study of derailment and accident scenarios, design issues, and performance evaluation.

The authors focus on the development of fully nonlinear formulations, supported by an explanation of the limitations of the linearized formulations that are frequently used in the analysis of railroad vehicle systems. The chapters of the book are organized to guide readers from basic concepts and definitions through a final understanding of the utility of fully nonlinear multibody- system formulations in the analysis of railroad vehicle systems.

Railroad Vehicle Dynamics: A Computational Approach is a valuable reference for researchers and practicing engineers who commonly use general-purpose, multibody-system computer programs in the analysis, design, and performance evaluation of railroad vehicle systems.


Table of Contents

Prefacep. xi
Acknowledgmentsp. xv
Chapter 1 Introductionp. 1
1.1 Railroad Vehicles and Multibody System Dynamicsp. 2
1.1.1 Generalityp. 2
1.1.2 Nonlinearityp. 4
1.1.3 Implementation of Railroad Vehicle Elementsp. 6
1.2 Constrained Dynamicsp. 9
1.3 Geometry Problemp. 11
1.3.1 Differential Geometryp. 12
1.3.2 Rail and Wheel Geometryp. 14
1.4 Contact Theoriesp. 17
1.4.1 Creep Forcesp. 17
1.4.2 Wheel/Rail Creep Theoriesp. 18
1.5 General Multibody Railroad Vehicle Formulationsp. 18
1.5.1 Constraint Contact Formulationp. 19
1.5.2 Elastic Contact Formulationp. 20
1.6 Specialized Railroad Vehicle Formulationsp. 20
1.7 Linearized Railroad Vehicle Modelsp. 23
1.8 Motion Stabilityp. 24
1.9 Motion Scenariosp. 27
1.9.1 Huntingp. 28
1.9.2 Steady Curvingp. 28
1.9.3 Spiral Negotiationp. 30
1.9.4 Twist and Rollp. 30
1.9.5 Pitch and Bouncep. 31
1.9.6 Yaw and Swayp. 31
1.9.7 Dynamic Curvingp. 31
1.9.8 Response to Discontinuitiesp. 32
Chapter 2 Dynamic Formulationsp. 35
2.1 General Displacementp. 36
2.2 Rotation Matrixp. 37
2.2.1 Direction Cosinesp. 38
2.2.2 Simple Rotationsp. 41
2.2.3 Euler Anglesp. 41
2.2.4 Euler Parametersp. 45
2.3 Velocities and Accelerationsp. 49
2.3.1 Velocity Vectorp. 49
2.3.2 Acceleration Vectorp. 50
2.3.3 Generalized Orientation Coordinatesp. 51
2.3.4 Singular Configurationp. 53
2.4 Newton-Euler Equationsp. 58
2.5 Joint Constraintsp. 62
2.5.1 Spherical Jointp. 62
2.5.2 Revolute Jointp. 63
2.5.3 Cylindrical Jointp. 64
2.5.4 Prismatic Jointp. 65
2.6 Augmented Formulationp. 66
2.7 Trajectory Coordinatesp. 70
2.7.1 Velocity and Accelerationp. 72
2.7.2 Equations of Motionp. 74
2.8 Embedding Techniquep. 76
2.8.1 Coordinate Partitioning and Velocity Transformationp. 77
2.8.2 Elimination of the Constraint Forcesp. 78
2.8.3 Reduced-Order Modelp. 78
2.9 Interpretation of the Methodsp. 80
2.9.1 Kinematic and Dynamic Equationsp. 80
2.9.2 Augmented Formulationp. 83
2.9.3 Embedding Techniquep. 84
2.9.4 D'Alembert's Principlep. 85
2.10 Virtual Workp. 86
Chapter 3 Rail and Wheel Geometryp. 89
3.1 Theory of Curvesp. 90
3.1.1 Arc Length and Tangent Linep. 90
3.1.2 Curvature and Torsionp. 91
3.2 Geometry of Surfacesp. 92
3.2.1 Tangent Plane and Normal Vectorp. 94
3.2.2 First Fundamental Formp. 95
3.2.3 Second Fundamental Formp. 96
3.2.4 Normal Curvaturep. 99
3.2.5 Principal Curvatures and Principal Directionsp. 100
3.3 Rail Geometryp. 103
3.4 Definitions and Terminologyp. 106
3.5 Geometric Description of the Trackp. 108
3.6 Computer Implementationp. 111
3.6.1 Track Segment Typesp. 112
3.6.2 Linear Representation of the Segmentsp. 112
3.6.3 Derivatives of the Anglesp. 114
3.7 Track Preprocessorp. 116
3.7.1 Track Preprocessor Inputp. 117
3.7.2 Numerical Integrationp. 118
3.7.3 Track Preprocessor Outputp. 120
3.7.4 Use of the Preprocessor Output during Dynamic Simulationp. 121
3.8 Wheel Geometryp. 123
Chapter 4 Contact and Creep-Force Modelsp. 127
4.1 Hertz Theoryp. 128
4.1.1 Geometry and Kinematicsp. 128
4.1.2 Contact Pressurep. 133
4.1.3 Computer Implementationp. 138
4.2 Creep Phenomenonp. 140
4.3 Wheel/Rail Contact Approachesp. 145
4.3.1 Exact Theory of Rolling Contactp. 146
4.3.2 Simplified Theory of Rolling Contactp. 147
4.3.3 Dynamic and Quasi-Static Theoryp. 147
4.3.4 Three- and Two-Dimensional Theoryp. 147
4.4 Creep-Force Theoriesp. 147
4.4.1 Carter's Theoryp. 147
4.4.2 Johnson and Vermeulen's Theoryp. 149
4.4.3 Kalker's Linear Theoryp. 150
4.4.4 Heuristic Nonlinear Creep-Force Modelp. 153
4.4.5 Polach Nonlinear Creep-Force Modelp. 154
4.4.6 Simplified Theoryp. 156
4.4.7 Kalker's USETABp. 159
Chapter 5 Multibody Contact Formulationsp. 161
5.1 Parameterization of Wheel and Rail Surfacesp. 162
5.1.1 Track Geometryp. 163
5.1.2 Wheel Geometryp. 165
5.2 Constraint Contact Formulationsp. 165
5.2.1 Contact Constraintsp. 166
5.2.2 Constrained Dynamic Equationsp. 167
5.3 Augmented Constraint Contact Formulation (ACCF)p. 168
5.4 Embedded Constraint Contact Formulation (ECCF)p. 171
5.4.1 Position Analysisp. 172
5.4.2 Equations of Motionp. 173
5.5 Elastic Contact Formulation-Algebraic Equations (ECF-A)p. 174
5.6 Elastic Contact Formulation-Nodal Search (ECF-N)p. 177
5.7 Comparison of Different Contact Formulationsp. 178
5.8 Planar Contactp. 179
5.8.1 Intermediate Wheel Coordinate Systemp. 181
5.8.2 Distance Traveledp. 182
5.8.3 Profile Parametersp. 184
5.8.4 Coupling between the Surface Parametersp. 185
Chapter 6 Implementation and Special Elementsp. 187
6.1 General Multibody System Algorithmsp. 188
6.1.1 Constrained Dynamicsp. 188
6.1.2 Penalty and Constraint Stabilization Methodsp. 189
6.1.3 Generalized Coordinates Partitioningp. 191
6.1.4 Identification of the Independent Coordinatesp. 194
6.2 Numerical Algorithms - Constraint Formulationsp. 194
6.2.1 Augmented Constraint Contact Formulation (ACCF)p. 195
6.2.2 Embedded Constraint Contact Formulation (ECCF)p. 201
6.3 Numerical Algorithms - Elastic Formulationsp. 205
6.3.1 Elastic Contact Formulation Using Algebraic Equations (ECF-A)p. 206
6.3.2 Elastic Contact Formulation Using Nodal Search (ECF-N)p. 208
6.4 Calculation of the Creep Forcesp. 210
6.5 Higher Derivatives and Smoothness Techniquep. 211
6.6 Track Preprocessorp. 214
6.6.1 Change in the Length Due to Curvaturep. 216
6.6.2 Use of the Preprocessor Output during Dynamic Simulationp. 218
6.7 Deviations and Measured Datap. 219
6.7.1 Track Deviationsp. 220
6.7.2 Measured Track Datap. 222
6.7.3 Track Quality and Classesp. 223
6.8 Special Elementsp. 225
6.8.1 Translational Spring-Damper-Actuator Elementp. 227
6.8.2 Rotational Spring-Damper-Actuator Elementp. 230
6.8.3 Series Spring-Damper Elementp. 231
6.8.4 Bushing Elementp. 232
6.9 Maglev Forcesp. 236
6.9.1 Electrodynamic Suspension (EDS)p. 236
6.9.2 Electromagnetic Suspension (EMS)p. 237
6.9.3 Modeling of Electromagnetic Suspensionsp. 237
6.9.4 Multibody System Electromechanical Equationsp. 240
6.10 Static Analysisp. 242
6.10.1 Augmented Constraint Contact Formulationp. 242
6.10.2 Embedded Constraint Contact Formulationp. 244
6.10.3 Line Search Methodp. 245
6.10.4 Continuation Methodp. 246
6.11 Numerical Comparative Studyp. 247
6.11.1 Simple Suspended Wheelsetp. 247
6.11.2 Complete Vehicle Modelp. 248
Chapter 7 Specialized Railroad Vehicle Formulationsp. 255
7.1 General Displacementp. 236
7.1.1 Trajectory Coordinate Systemp. 256
7.1.2 Body Coordinate Systemp. 258
7.1.3 Generalized Trajectory Coordinatesp. 259
7.2 Velocity and Accelerationp. 260
7.2.1 Velocity of the Center of Massp. 260
7.2.2 Acceleration of the Center of Massp. 261
7.2.3 Angular Velocity and Accelerationp. 262
7.3 Equations of Motionp. 264
7.4 Trajectory Coordinate Constraintsp. 265
7.4.1 Numerical Examplep. 266
7.4.2 Use of the Cartesian Coordinatesp. 269
7.5 Single-Degree-of-Freedom Modelp. 272
7.6 Two-Degree-of-Freedom Modelp. 277
7.7 Linear Hunting Stability Analysisp. 280
7.7.1 Model 1p. 287
7.7.2 Model 2p. 288
Chapter 8 Creepage Linearizationp. 291
8.1 Backgroundp. 291
8.2 Transformation and Angular Velocityp. 295
8.2.1 Matrix Identitiesp. 295
8.2.2 Definition of the Angular Velocityp. 296
8.3 Euler Anglesp. 298
8.4 Linearization Assumptionsp. 300
8.5 Longitudinal and Lateral Creepagesp. 301
8.6 Spin Creepagep. 305
8.7 Newton-Euler Equationsp. 306
8.8 Concluding Remarksp. 309
Appendix A Contact Equationsp. 313
Appendix B Elliptical Integralsp. 319
Referencesp. 321
Indexp. 333
Go to:Top of Page