Cover image for Semi-active suspension control : improved vehicle ride and road friendliness
Title:
Semi-active suspension control : improved vehicle ride and road friendliness
Publication Information:
Berlin, GW : Springer, 2008
Physical Description:
xvi, 294 p. : ill. ; 25 cm.
ISBN:
9781848002302
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010193994 TL259 S46 2008 Open Access Book Book
Searching...

On Order

Summary

Summary

Semi-active Suspension Control provides an overview of vehicle ride control employing smart semi-active damping systems. These systems are able to tune the amount of damping in response to measured vehicle-ride and handling indicators.

Two physically different dampers (magnetorheological and controlled-friction) are analysed from the perspectives of mechatronics and control. Ride comfort, road holding, road damage and human-body modelling are studied.

Mathematical modelling is balanced by a large and detailed section on experimental implementation, where a variety of automotive applications are described offering a well-rounded view. The implementation of control algorithms with regard to real-life engineering constraints is emphasised.

The applications described include semi-active suspensions for a saloon car, seat suspensions for vehicles not equipped with a primary suspension, and control of heavy-vehicle dynamic-tyre loads to reduce road damage and improve handling.


Table of Contents

1 Introductionp. 1
1.1 Introductionp. 1
1.2 Historical Notes on Suspensionsp. 3
1.3 Active and Semi-active Suspensions in the Scientific Literaturep. 5
1.4 Comfort in a Vehiclep. 7
1.4.1 Comfort Assessmentp. 10
1.5 Introduction to Controlled Dampersp. 10
1.6 Introduction to Friction Dampersp. 12
1.7 Introduction to MR Dampersp. 14
2 Dampers and Vehicle Modellingp. 17
2.1 Introductionp. 17
2.2 Phenomenology of Hysteresisp. 19
2.3 Damper Hysteresis Modellingp. 22
2.3.1 Bouc-Wen Modelp. 24
2.3.1.1 Parameter Ap. 24
2.3.1.2 Parameter [gamma]p. 25
2.3.1.3 Parameter vp. 26
2.3.1.4 Parameter np. 26
2.4 Bouc-Wen Parameter Identificationp. 27
2.5 Vehicle Ride Modelsp. 27
2.5.1 Quarter Car Modelp. 29
2.5.2 Half Car Modelp. 31
2.5.3 Full Car Modelp. 32
2.5.4 Half Truck Modelp. 36
2.6 Tyre Modellingp. 39
2.7 Road Modellingp. 40
3 Human Body Analysisp. 43
3.1 Introductionp. 43
3.2 Human Body Responsep. 44
3.3 Hysteretic Dampingp. 44
3.3.1 The Duffing Equationp. 45
3.3.2 Suppression of Jumpsp. 46
3.4 Low-frequency Seated Human Modelp. 48
3.4.1 Multi-frequency Inputp. 49
3.5 Semi-active Controlp. 51
3.6 State Observerp. 51
3.6.1 Luenberger State Observerp. 51
3.6.2 Simple State Observerp. 52
3.6.3 Ideal Controlp. 53
3.7 Resultsp. 54
3.8 Seated Human with Head-and-Neck Complexp. 57
3.8.1 Driver Seat (Including Cushions)p. 58
3.8.2 Driver Bodyp. 59
3.8.3 Head-and-Neck Complex (HNC)p. 59
3.8.4 Analysis of the Head-and-Neck Systemp. 60
3.8.5 Head Accelerations During Avoidance Manoeuvrep. 64
4 Semi-active Control Algorithmsp. 65
4.1 Introductionp. 65
4.2 PID Controllersp. 67
4.3 Adaptive Controlp. 68
4.4 Robust Controlp. 69
4.5 Balance, Skyhook and Groundhookp. 70
4.5.1 Balance Logicp. 70
4.5.2 Skyhook Logicp. 70
4.5.3 Groundhook Logicp. 70
4.5.4 Displacement-based On-Off Groundhook Logicp. 71
4.5.5 Hybrid Skyhook-Groundhook Logicp. 71
4.6 Balance Logic Analysisp. 72
4.7 Chattering Reduction Strategiesp. 75
4.8 SA Vibration Control of a 1DOF System with Sequential Dry Frictionp. 79
4.8.1 Sequential Damping Characteristicsp. 81
4.8.2 Free Vibration: Phase Plane Trajectoriesp. 82
4.8.3 Free Vibration: Shock Absorbing Propertiesp. 83
4.8.4 Harmonically-Excited Vibrationp. 85
4.8.4.1 Time Historiesp. 85
4.8.4.2 Amplitude-Frequency Characteristicsp. 85
4.8.5 Random Vibrationp. 87
4.8.5.1 Simulation of White Noise Sample Functionsp. 89
4.8.5.2 Numerical Solution of the Equation of Motionp. 91
4.8.5.3 Numerical Resultsp. 92
4.9 Stability of SA Control with Sequential Dry Frictionp. 93
4.10 Quarter Car Response with Sequential Dry Frictionp. 95
5 Friction Dampersp. 99
5.1 Introductionp. 99
5.2 Friction Force Modellingp. 99
5.2.1 Static Friction Modelsp. 100
5.2.2 Dynamic Friction Modelsp. 102
5.2.3 Seven-parameter Friction Modelp. 102
5.3 The Damper Electrohydraulic Drivep. 104
5.4 Friction Damper Hydraulic Drive Modellingp. 107
5.4.1 Power Consumptionp. 115
5.4.2 The Feedback Chainp. 115
5.5 Pilot Implementation of Friction Damper Controlp. 116
5.6 Automotive Friction Damper Designp. 122
5.7 Switched State Feedback Controlp. 126
5.8 Preliminary Simulation Resultsp. 129
5.9 Friction Damper Electrohydraulic Drive Assessmentp. 141
5.10 Electrohydraulic Drive Parameters Validationp. 151
5.11 Performance Enhancement of the Friction Damper Systemp. 156
5.11.1 Damper Design Modificationp. 157
5.11.2 Hydraulic Drive Optimisationp. 159
5.11.3 Friction Damper Controller Enhancementp. 161
6 Magnetorheological Dampersp. 165
6.1 Introductionp. 165
6.2 Magnetorheological Fluidsp. 165
6.3 MR Fluid Devicesp. 167
6.3.1 Basic Operating Modesp. 167
6.3.2 Flow Simulationp. 168
6.3.2.1 Pressure-driven Flow Mode with Either Pole Fixedp. 168
6.3.2.2 Direct Shear Mode with Relatively Movable Polesp. 177
6.3.2.3 Squeeze-film Modep. 180
6.4 MR Damper Designp. 180
6.4.1 Input Data and Choice of the Design Solutionp. 181
6.4.2 Selection of the Working MR Fluidp. 181
6.4.2.1 MR Fluid Figures of Meritp. 182
6.4.2.2 Choice of the MR Fluidp. 183
6.4.3 Determination of the Optimal Gap Size and Hydraulic Designp. 185
6.4.3.1 Controllable Force and Dynamic Rangep. 185
6.4.3.2 Parameters of the Hydraulic Circuitp. 186
6.4.4 Magnetic Circuit Designp. 187
6.5 MRD Modelling and Characteristics Identificationp. 189
6.5.1 Experimental Datap. 190
6.5.2 Parametric Model Simulationp. 192
6.5.3 Fuzzy-logic-based Modelp. 200
6.5.4 Modelling the Variable Field Strengthp. 203
6.5.5 GA-based Method for MR Damper Model Parameters Identificationp. 209
7 Case Studiesp. 219
7.1 Introductionp. 219
7.1.1 Some Aspects of Data Acquisition and Controlp. 219
7.2 Car Dynamics Experimental Analysisp. 221
7.2.1 The Experimental Set-upp. 221
7.2.2 Post-processing and Measurement Resultsp. 224
7.2.3 Suspension Spring and Tyre Testsp. 229
7.3 Passively-Damped Car Validationp. 230
7.4 Case Study 1: SA Suspension Unit with FDp. 232
7.4.1 Frequency-domain Analysisp. 233
7.4.2 Time-domain Analysisp. 234
7.4.3 Semi-active System Validationp. 242
7.5 Case Study 2: MR-based SA Seat Suspensionp. 245
7.5.1 Numerical Resultsp. 248
7.5.2 Conclusionsp. 250
7.6 Case Study 3: Road Damage Reduction with MRD Truck Suspensionp. 251
7.6.1 Introductionp. 251
7.6.2 Half Truck and MR Damper Modelp. 252
7.6.3 Road Damage Assessmentp. 255
7.6.4 Road Damage Reduction Algorithmp. 255
7.6.5 Time Responsep. 256
7.6.6 Truck Response on Different Road Profilesp. 258
7.6.7 Truck Response to Bump and Potholep. 262
7.6.8 Robustness Analysisp. 264
7.6.8.1 Trailer Mass Variationp. 266
7.6.8.2 Tyre Stiffness Variationp. 267
7.6.8.3 MRD Response Timep. 268
7.7 Conclusionsp. 270
Referencesp. 271
Bibliographyp. 283
Authors' Biographiesp. 289
Indexp. 291