Skip to:Content
|
Bottom
Cover image for Functional nanostructured materials and membranes for water treatment
Title:
Functional nanostructured materials and membranes for water treatment
Publication Information:
Weinheim : Wiley-VCH, 2013
Physical Description:
xxvii, 319 p. : ill. ; 25 cm.
ISBN:
9783527329878

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010321204 TD430 F86 2013 Open Access Book Book
Searching...

On Order

Summary

Summary

Membranes have emerged over the last 30 years as a viable water treatment technology. Earth's population is growing and the need for alternative ways to generate potable water is rising. The recent advent of nanotechnology opens the door to improving processes in membrane
technology, which is a promising step on the way to solving the earth's potable water problem. Current performance is enhanced and new concepts are possible by engineering on the nanoscale. This book presents key areas of nanotechnology such as fouling tolerant and robust membranes, enhanced destruction of pollutants and faster monitoring of water quality.

'Functional Nanostructured Materials and Membranes for Water Treatment' is part of the series on Materials for Sustainable Energy and Development edited by Prof. G.Q. Max Lu. The series covers advances in materials science and innovation for renewable energy, clean use of fossil energy, and greenhouse gas mitigation and associated environmental technologies.


Author Notes

Mikel Duke Victoria University, Melbourne, Australia
Dongyuan Zhao Fudan University, Shanghai, PR China
Raphael Semiat TECHNION, Haifa, Israel


Table of Contents

Mikel Duke and Raphael Semiat and Dongyuan ZhaoHilla Shemer and Raphael SemiatShanqing Zhang and Huijun ZhaoYonghui Deng and Dongyuan ZhaoYoram Cohen and Nancy Lin and Kari J. Varin and Diana Chien and Robert F. HicksChalida Klaysom and Bradley P. Ladewig and G.Q. Max Lu and Lianzhou WangDan Li and Huanting WangWdhong Xing and Yiqun Fan and Wanqin JinBo Zhu and Bin Li and Linda Zou and Anita J. Hill and Dongyuan Zhao and Jerry Y. S. Lin and Mikel DukeHarry F. Ridgway and Julian D. Gale and Zak E. Hughes and Matthew B. Stewart and John D. Orhell and Stephen R. GrayMikel Duke
Forewordp. xiii
Series Editor Prefacep. xv
Acknowledgmentsp. xvii
About the Series Editorp. xix
About the Volume Editorsxxi
List of Contributorsp. xxiii
1 Target Areas for Nanotechnology Development for Water Treatment and Desalinationp. 1
1.1 The Future of Water Treatment: Where Should We Target Our Efforts?p. 1
1.2 Practical Considerations for Nanotechnology Developersp. 2
1.3 The Water Treatment Market for New Nanotechnologyp. 3
1.4 Purpose of This Bookp. 4
1.5 Concluding Remarksp. 5
Referencesp. 6
2 Destruction of Organics in Water via Iron Nanoparticlesp. 7
2.1 Introductionp. 7
2.2 Nanoparticles as Catalystsp. 8
2.2.1 Colloidal Nanoparticlesp. 9
2.2.2 Supported Nanoparticlesp. 9
2.3 Advanced Oxidation Processesp. 10
2.3.1 Fenton-Like Reactionsp. 12
2.3.1.1 Iron Oxide as Heterogeneous Nanocatalystp. 12
2.3.2 Photo-Fenton Reactionsp. 16
2.3.3 Nanocatalytic Wet Oxidationp. 17
2.4 Nano Zero-Valent Iron (nZVI)p. 18
2.4.1 Synthesizing Methodsp. 20
2.4.1.1 Emulsified Zero-Valent Ironp. 21
2.4.2 Degradation Mechanismp. 22
2.4.3 Field Application of nZVIp. 25
2.5 Bimetallic nZVI Nanoparticlesp. 27
2.6 Summaryp. 29
Referencesp. 30
3 Photocatalysis at Nanostructured Titania for Sensing Applicationsp. 33
3.1 Backgroundp. 33
3.1.1 Photocatalysis at TiO 2 Nanomaterialsp. 33
3.1.2 Photoelectrocatalysis at TiO 2 Nanomaterialsp. 36
3.2 Fabrication of TiO 2 Photoanodesp. 37
3.2.1 Common Fabrication Techniques and Substrates for Photoanodesp. 37
3.2.2 TiO 2 /BDD Photoanodep. 38
3.2.3 TiO 2 Mixed-Phase Photoanodep. 39
3.2.4 CNTs/TiO 2 Composite Photoanodep. 40
3.3 The Sensing Application of TiO 2 Photocatalysisp. 41
3.3.1 Photocatalytic Determination of TOCp. 42
3.3.2 Photocatalytic Determination of CODp. 43
3.4 The Sensing Application of TiO 2 Photoelectrocatalysisp. 46
3.4.1 Probe-Type TiO 2 Photoanode for Determination of CODp. 46
3.4.2 Exhaustive Degradation Mode for Determination of CODp. 50
3.4.3 Partial Oxidation Mode for Determination of CODp. 53
3.4.4 UV-LED for Miniature Photoelectrochemical Detectorsp. 55
3.4.5 Photoelectrochemical Universal Detector for Organic Compoundsp. 55
3.5 Photocatalytic Gas Sensingp. 56
3.5.1 The Photoelectrocatalytic Generation of Analytical Signalp. 57
3.5.2 Photocatalytic Surface Self-Cleaning for Enhancement of Analytical Signalp. 58
3.6 Conclusionsp. 59
Referencesp. 59
4 Mesoporous Materials for Water Treatmentp. 67
4.1 Adsorption of Heavy Metal Ionsp. 68
4.2 Adsorption of Anionsp. 73
4.3 Adsorption of Organic Pollutantsp. 74
4.4 Multifunctional Modification of Sorbentsp. 77
4.5 Photocatalytic Degradation of Organic Pollutantsp. 79
4.6 Conclusions and Outlookp. 82
Acknowledgmentsp. 83
Referencesp. 83
5 Membrane Surface Nanostructuring with Terminally Anchored Polymer Chainsp. 85
5.1 Introductionp. 85
5.2 Membrane Foulingp. 86
5.3 Strategies for Mitigation of Membrane Fouling and Scalingp. 89
5.4 Membrane Surface Structuring via Graft Polymerizationp. 91
5.4.1 Overviewp. 91
5.4.2 Reaction Schemes for Graft Polymerizationp. 92
5.4.3 Surface Activation with Vinyl Monomersp. 94
5.4.4 Surface Activation with Chemical Initiatorsp. 95
5.4.5 Irradiation-Induced Graft Polymerizationp. 97
5.4.5.1 Gamma-Induced Graft Polymerizationp. 97
5.4.5.2 UV-Induced Graft Polymerizationp. 99
5.4.6 Plasma-Initiated Graft Polymerizationp. 101
5.5 Summaryp. 104
Referencesp. 107
6 Recent Advances in Ion Exchange Membranes for Desalination Applicationsp. 125
6.1 Introductionp. 225
6.2 Fundamentals of IEMs and Their Transport Phenomenap. 125
6.2.1 Ion Transport through IEMsp. 127
6.2.2 Concentration Polarization and Limiting Current Densityp. 128
6.2.2.1 The Overlimiting Current Densityp. 128
6.2.2.2 Water Dissociationp. 129
6.2.2.3 Gravitational Convectionp. 130
6.2.2.4 Electroconvectionp. 130
6.2.3 Structure and Surface Heterogeneity of IEMsp. 130
6.3 Material Developmentp. 135
6.3.1 The Development of Polymer-Based IEMsp. 135
6.3.1.1 Direct Modification of Polymer Backbonep. 135
6.3.1.2 Direct Polymerization from Monomer Unitsp. 139
6.3.1.3 Charge Induced on the Film Membranesp. 142
6.3.2 Composite Ion Exchange Membranesp. 143
6.3.3 Membranes with Specific Propertiesp. 147
6.3.3.1 Improving Antifouling Propertyp. 149
6.4 Future Perspectives of IEMsp. 150
6.4.1 Hybrid Systemp. 150
6.4.2 Small-Scale Seawater Desalinationp. 152
6.5 Conclusionsp. 152
Referencesp. 154
7 Thin Film Nanocomposite Membranes for Water Desalinationp. 163
7.1 Introductionp. 163
7.2 Fabrication and Characterization of Inorganic Fillersp. 168
7.3 Fabrication and Characterization of TFC/TFN Membranesp. 172
7.3.1 Interfacial Polymerizationp. 172
7.3.2 Interfacial Polymerization with Inorganic Fillersp. 175
7.3.3 Characterization of TFN or TFC Membranesp. 177
7.4 Membrane Properties Tailored by the Addition of Fillersp. 179
7.4.1 Water Permeability and Salt Rejectionp. 179
7.4.2 Fouling Resistance, Chlorine Stability, and Other Propertiesp. 184
7.5 Commercialization and Future Developments of TFN Membranesp. 185
7.6 Summaryp. 187
Referencesp. 188
8 Application of Ceramic Membranes in the Treatment of Waterp. 195
8.1 Introductionp. 195
8.2 Membrane Preparationp. 196
8.2.1 Extrusionp. 196
8.2.2 Sol-Gel Processp. 196
8.3 Clarification of Surface Water and Seawater Using Ceramic Membranesp. 198
8.3.1 Ceramic Membrane Micro filtration of Surface Waterp. 199
8.3.1.1 Pretreatment with Flocculation/Coagulationp. 199
8.3.1.2 Effect of Transmembrane Pressure (TMP) and Cross-Flow Velocity (CFV)p. 199
8.3.1.3 Ultrasound Cleaningp. 200
8.3.1.4 Hybrid Ozonation-Ceramic Ultrafiltrationp. 201
8.3.1.5 Ceramic Membrane Applications for Industrial-Scale Waterworksp. 201
8.3.2 Pretreatment of Seawater RO Using Ceramic Membranesp. 201
8.3.2.1 Effect of Operational Parametersp. 201
8.3.2.2 Ceramic Membrane Application for the Industrial-Scale SWRO Plantp. 202
8.4 Ceramic Membrane Application in the Microfiltration and Ultrafiltration of Wastewaterp. 202
8.4.1 Microstructure of the Membranesp. 204
8.4.2 Surface Properties of Ceramic Membranesp. 205
8.4.2.1 Wettabilityp. 205
8.4.2.2 Surface Charge Propertiesp. 206
8.4.2.3 Technical Processp. 208
8.4.2.4 Costp. 212
8.5 Conclusions and Prospectsp. 213
Referencesp. 213
9 Functional Zeolitic Framework Membranes for Water Treatment and Desalinationp. 217
9.1 Introductionp. 217
9.2 Preparation of Zeolite Membranesp. 219
9.2.1 Direct In situ Crystallizationp. 220
9.2.2 Seeded Secondary Growthp. 221
9.2.3 Microwave Synthesisp. 223
9.2.4 Postsynthetic Treatmentp. 228
9.3 Zeolite Membranes for Water Treatmentp. 229
9.3.1 Zeolite Membranes for Desalinationp. 229
9.3.2 Zeolite Membranes for Wastewater Treatmentp. 235
9.3.3 Zeolite Membrane-Based Reactors for Wastewater Treatmentp. 238
9.4 Conclusions and Future Perspectivesp. 241
Acknowledgmentsp. 241
Referencesp. 242
10 Molecular Scale Modeling of Membrane Water Treatment Processesp. 249
10.1 Introductionp. 249
10.2 Molecular Simulations of Polymeric Membrane Materials for Water Treatment Applicationsp. 249
10.2.1 RO Membranes: Synthesis, Structure, and Propertiesp. 250
10.2.2 Strategies for Modeling Polymer Membranesp. 255
10.2.3 Simulation of Water and Solute Transport Behaviorsp. 262
10.2.4 Concluding Remarksp. 266
10.3 Molecular Simulation of Inorganic Desalination Membranesp. 267
10.3.1 Modeling of Zeolitesp. 268
10.3.2 Behavior of Water within Zeolitesp. 270
10.3.3 Zeolites and Salt Ionsp. 276
10.3.4 Concluding Remarksp. 278
10.4 Molecular Simulation of Membrane Foulingp. 279
10.4.1 Molecular Modeling of Potential Organic Foulantsp. 280
10.4.2 Modeling of Membrane Foulingp. 286
10.4.3 Future Directionsp. 291
10.4.4 Concluding Remarksp. 291
Referencesp. 292
11 Conclusions: Some Potential Future Nanotechnologies for Water Treatmentp. 301
11.1 Nanotubesp. 301
11.1.1 Fast Molecular Flowp. 302
11.1.2 CNTs as High Strength Fibersp. 302
11.1.3 High Aspect Ratiop. 303
11.1.4 Electrical Conductivityp. 304
11.2 Graphenep. 305
11.2.1 Graphene Barrier Materialp. 305
11.2.2 Desalination and Heavy Metal Adsorptionp. 306
11.2.3 Catalytic Assistancep. 306
11.3 Aquaporinsp. 306
11.4 Metal-Organic, Zeolitic Imidazolate, and Polymer Organic Frameworksp. 307
11.5 Conclusionsp. 309
Referencesp. 309
Indexp. 313
Go to:Top of Page