Cover image for Coherent x-ray optics
Title:
Coherent x-ray optics
Personal Author:
Publication Information:
Oxford, NY : Oxford University Press, 2006
Physical Description:
xii, 411 p. : ill. ; 24 cm.
ISBN:
9780198567288

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010178198 TA1775 P33 2006 Open Access Book Book
Searching...

On Order

Summary

Summary

This book gives a thorough treatment of the rapidly-expanding field of coherent x-ray optics, which has recently experienced something of a renaissance with the availability of third-generation synchrotron sources. It is the first book of its kind. The author begins with a treatment of the fundamentals of x-ray diffraction for both coherent and partially coherent radiation, together with the interactions of x-rays with matter. X-ray sources, optics elements and detectors are then discussed, with an emphasis on their role in coherent x-ray optics. Various facets of coherent x-ray imaging are then discussed, including holography, interferometry, self imaging, phase contrast and phase retrieval. Lastly, the foundations of the new field of singular x-ray optics are examined. Most topics are developed from first principles, with numerous references given to the contemporary research literature. This book will be useful to x-ray physicists and students, together with optical physicists and engineers who wish to learn more about the fascinating subject of coherent x-ray optics.


Author Notes

David M. Paganin is a Lecturer at the School of Physics, Monash University, Australia.


Table of Contents

1 X-ray wave-fields in free spacep. 1
1.1 Vacuum wave equations for electromagnetic fieldsp. 2
1.2 Spectral decomposition and the analytic signalp. 5
1.3 Angular spectrum of plane wavesp. 6
1.4 Fresnel diffractionp. 10
1.4.1 Operator formulationp. 11
1.4.2 Convolution formulationp. 12
1.5 Fraunhofer diffractionp. 16
1.6 Kirchhoff and Rayleigh-Sommerfeld diffraction theoryp. 18
1.6.1 Kirchhoff diffraction integralp. 18
1.6.2 Rayleigh-Sommerfeld diffraction integralsp. 23
1.7 Partially coherent fieldsp. 26
1.7.1 Random variables and random processesp. 26
1.7.2 Intermediate states of coherencep. 29
1.7.3 Spatial coherencep. 30
1.7.4 Temporal coherencep. 36
1.8 The mutual coherence functionp. 37
1.9 Propagation of two-point correlation functionsp. 46
1.9.1 Vacuum wave equationsp. 47
1.9.2 Operator formulationp. 50
1.9.3 Green function formulationp. 53
1.9.4 Van Cittert-Zernike theoremp. 58
1.10 Higher-order correlation functionsp. 59
1.11 Summaryp. 60
2 X-ray interactions with matterp. 64
2.1 Wave equations in the presence of scatterersp. 65
2.2 The projection approximationp. 71
2.3 Point scatterers and the outgoing Green functionp. 77
2.3.1 First method for obtaining Green functionp. 79
2.3.2 Second method for obtaining Green functionp. 80
2.4 Integral-equation formulation of scatteringp. 83
2.5 First Born approximation for kinematical scatteringp. 84
2.5.1 Fraunhofer and first Born approximationsp. 86
2.5.2 Angular spectrum and first Born approximationp. 89
2.5.3 The Ewald spherep. 90
2.6 Born series and dynamical scatteringp. 97
2.7 Multislice approximationp. 99
2.8 Eikonal approximation and geometrical opticsp. 101
2.9 Scattering, refractive index, and electron densityp. 108
2.10 Inelastic scattering and absorptionp. 115
2.10.1 Compton scatteringp. 115
2.10.2 Photoelectric absorption and fluorescencep. 119
2.11 Information content of scattered fieldsp. 122
2.11.1 Scattered monochromatic fieldsp. 122
2.11.2 Scattered polychromatic fieldsp. 127
2.12 Summaryp. 130
3 X-ray sources, optical elements, and detectorsp. 136
3.1 Sourcesp. 137
3.1.1 Brightness and emittancep. 137
3.1.2 Fixed-anode and rotating-anode sourcesp. 138
3.1.3 Synchrotron sourcesp. 139
3.1.4 Free-electron lasersp. 145
3.1.5 Energy-recovering linear acceleratorsp. 149
3.1.6 Soft X-ray lasersp. 151
3.2 Diffractive optical elementsp. 152
3.2.1 Diffraction gratingsp. 152
3.2.2 Fresnel zone platesp. 160
3.2.3 Analyser crystalsp. 169
3.2.4 Crystal monochromatorsp. 176
3.2.5 Crystal beam-splitters and interferometersp. 178
3.2.6 Bragg-Fresnel crystal opticsp. 183
3.2.7 Free spacep. 185
3.3 Reflective optical elementsp. 186
3.3.1 X-ray reflection from surfacesp. 186
3.3.2 Capillary opticsp. 191
3.3.3 Square-channel arraysp. 192
3.3.4 X-ray mirrorsp. 193
3.4 Refractive optical elementsp. 195
3.4.1 Prismsp. 195
3.4.2 Compound refractive lensesp. 198
3.5 Virtual optical elementsp. 203
3.6 X-ray detectorsp. 205
3.6.1 Critical detector parametersp. 205
3.6.2 Types of X-ray detectorp. 208
3.6.3 Detectors and coherencep. 212
3.7 Summaryp. 216
4 Coherent X-ray imagingp. 228
4.1 Operator theory of imagingp. 230
4.1.1 Imaging using coherent fieldsp. 230
4.1.2 Imaging using partially coherent fieldsp. 237
4.1.3 Cascaded systemsp. 238
4.2 Self imagingp. 240
4.2.1 Talbot effect for monochromatic fieldsp. 242
4.2.2 Talbot effect for polychromatic fieldsp. 246
4.2.3 Montgomery effect for monochromatic fieldsp. 249
4.2.4 Montgomery effect for polychromatic fieldsp. 253
4.3 Holographyp. 254
4.3.1 In-line holographyp. 254
4.3.2 Off-axis holographyp. 258
4.3.3 Fourier holographyp. 258
4.4 Phase contrastp. 261
4.4.1 Zernike phase contrastp. 263
4.4.2 Differential interference contrastp. 268
4.4.3 Analyser-based phase contrastp. 270
4.4.4 Propagation-based phase contrastp. 278
4.4.5 Hybrid phase contrastp. 284
4.5 Phase retrievalp. 289
4.5.1 Gerchberg-Saxton algorithm and extensionsp. 291
4.5.2 The transport-of-intensity equationp. 295
4.5.3 One-dimensional phase retrievalp. 301
4.6 Interferometryp. 310
4.6.1 Bonse-Hart interferometerp. 311
4.6.2 Young interferometerp. 315
4.6.3 Intensity interferometerp. 318
4.6.4 Other means for coherence measurementp. 321
4.7 Virtual optics for coherent X-ray imagingp. 322
4.7.1 General remarks on virtual opticsp. 322
4.7.2 Example of virtual opticsp. 324
4.8 Summaryp. 327
5 Singular X-ray opticsp. 341
5.1 Vortices in complex scalar fieldsp. 342
5.2 Nodal linesp. 342
5.3 Nodal lines are vortex coresp. 346
5.4 Polynomial vortex solutions to d'Alembert equationp. 347
5.5 Vortex dynamicsp. 351
5.5.1 Vortex nucleation and annihilationp. 351
5.5.2 Stability with respect to perturbationsp. 353
5.5.3 Vortex interaction with a background fieldp. 354
5.6 Means of generating wave-field vorticesp. 357
5.6.1 Interference of three coherent plane wavesp. 357
5.6.2 Synthetic hologramsp. 363
5.6.3 Spiral phase masksp. 370
5.6.4 Spontaneous vortex formationp. 373
5.7 Domain walls and other topological phase defectsp. 380
5.8 Caustics and the singularity hierarchyp. 382
5.9 Summaryp. 387
A Review of Fourier analysisp. 393
A.1 Fourier transforms in one and two dimensionsp. 393
A.2 Convolution theoremp. 394
A.3 Fourier shift theoremp. 395
A.4 Fourier derivative theoremp. 395
A.5 Sifting property of Dirac deltap. 396
B Fresnel scaling theoremp. 397
C Reciprocity theorem for monochromatic scalar fieldsp. 401
Indexp. 405