Cover image for Laser cleaning : optical physics, applied physics and materials science
Title:
Laser cleaning : optical physics, applied physics and materials science
Publication Information:
River Edge, N.J. : World Scientific, 2002
ISBN:
9789810249410

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010026045 TA1675 L374 2002 Open Access Book Book
Searching...

On Order

Summary

Summary

Presents the mechanics of the cleaning processes, experimental results, and different applications, including laser cleaning of art.


Table of Contents

W. ZapkaN. ArnoldB. S. Luk'yanchuk and M. Mosbacher and Y. W. Zheng and H.-J. Munzer and S. M. Huang and M. Bertsch and W. D. Song and Z. B. Wang and Y. F. Lu and O. Dubbers and J. Boneberg and P. Leiderer and M. H. Hong and T. C. ChongD.M. Kane and A.J. Fernandes and D.R. HalfpennyC.P. Grigoropoulos and D. KimP. Leiderer and M. Mosbacher and V. Dobler and A. Schilling and O. Yavas and B.S. Luk'yanchuk and J. BonebergV. P. Veiko and E. A. ShakhnoV. ZafiropulosB. S. Luk'yanchuk and V. ZafiropulosM. Takai and N. Suzuki and O. YavasM. H. Hong and W. D. Song and Y. F. Lu and B. S. Luk'yanchuk and T. C. Chong
Prefacep. 1
Part 1. History
Chapter 1. The Road to "Steam Laser Cleaning"p. 23
1. Meeting Andrew C. Tamp. 23
2. A cleaning method neededp. 24
3. 'Laser cleaning'p. 26
4. 'Steam laser cleaning'p. 29
5. Steam laser cleaning with short-pulse IR-lasersp. 33
6. Steam laser cleaning: direct imaging of the jet motionp. 34
7. Opto-acoustic detection of the liquid film explosionp. 40
8. Steam laser cleaning: study of the mechanism of the liquid film explosionp. 41
9. Stencil masks againp. 45
Acknowledgementp. 46
Thanks to Andrew C. Tamp. 46
Referencesp. 46
Part 2. Dry Laser Cleaning
Chapter 2. Dry Laser Cleaning of Particles by Nanosecond Pulses: Theoryp. 51
1. Introductionp. 51
2. Adhesion potential and equation of motionp. 53
2.1. Model expression for elastic-VdW potentialp. 53
2.2. Parabolic approximationp. 57
2.3. Equation for the evolution of deformation hp. 58
2.4. Damping coefficientp. 59
2.4.1. Knudsen viscosityp. 59
2.4.2. Stokes viscosityp. 59
2.4.3. Absorption of soundp. 60
2.4.4. Emission of soundp. 61
2.4.5. Plastic deformationp. 61
3. Thermal expansionp. 62
3.1. Hierarchy of scalesp. 62
3.2. General equationsp. 63
3.3. Unilateral quasi-static expansionp. 65
3.4. 3D quasi-static expansion for finite beams with 1D heat conductionp. 67
3.4.1. Comparison between different approximationsp. 68
3.5. Particle influence on the expansion of the substratep. 69
3.6. Unilateral dynamic expansionp. 70
3.7. Thermal expansion of absorbing particlep. 71
3.8. Transparent particle heated by the substratep. 72
3.9. Maximum energy of ejected particlesp. 72
4. Cleaning thresholdp. 73
4.1. General threshold conditionsp. 73
4.1.1. Short cleaning pulsep. 74
4.1.2. Long cleaning pulsep. 74
4.1.3. Over-damped movementp. 75
4.1.4. Long pulses with steep frontsp. 75
4.2. Single sinusoidal pulse in parabolic potential without dampingp. 76
4.3. Dependence of cleaning threshold on particle radius and pulse durationp. 78
5. SiO[subscript 2] particles cleaned from Si wafersp. 82
5.1. Experimentalp. 82
5.2. Cleaning threshold vs. radiusp. 83
5.3. Role of small oscillations in intensityp. 86
5.4. Suggestions for cleaning experimentsp. 87
6. Conclusionsp. 89
Acknowledgementsp. 90
Appendix A. Quasi-static 3D thermal expansionp. 90
Appendix B. Cleaning threshold with the single sinusoidal pulsep. 95
Referencesp. 96
Chapter 3. Optical Resonance and Near-Field Effects in Dry Laser Cleaningp. 103
1. Introductionp. 103
2. Optical resonance and near-field effects within the Mie theoryp. 106
3. Particle on the surface. Beyond the Mie theoryp. 117
4. Adhesion potential and Hamaker-Lifshitz constantp. 128
5. Temperature under the particlep. 138
6. Dynamics of the particle, 3D effectsp. 144
7. Comparison with experimental resultsp. 155
7.1. Local substrate ablation--a probe for optical near-fieldsp. 155
7.1.1. Morphology of near field-induced damage sitesp. 156
7.1.2. Parameters influencing field enhancement induced ablationp. 159
7.2. Near field effects in the laser cleaning processp. 162
7.2.1. Experimental detailsp. 162
7.2.2. Variation of the size parameterp. 163
7.2.2.1. Variation of the particle sizep. 164
7.2.2.2. Variation of the laser wavelengthp. 167
7.2.3. Influence of incident anglep. 168
7.2.4. Influence of surface roughnessp. 169
8. Conclusionp. 170
Acknowledgementsp. 172
Referencesp. 172
Part 3. Steam Laser Cleaning
Chapter 4. Pulsed laser cleaning of particles from surfaces and optical materialsp. 181
1. Introductionp. 181
2. Review tables of experimental pulsed laser cleaning of contaminants (mostly particles) from surfacesp. 185
2.1. Overview of the information in the tablesp. 185
2.2. Silicon-wafers, hydrophilic and membrane masksp. 190
2.3. Glass and related optical surfacesp. 196
2.4. Other material surfacesp. 198
3. Experimental studies of laser cleaning particles from glass at Macquarie Universityp. 198
3.1. Single pulse laser cleaning studiesp. 198
3.1.1. "Dip and tap" sample preparationp. 198
3.1.2. Dry/Damp laser cleaningp. 199
3.1.3. Before and after images--microscope slides and fused silicap. 211
3.2. Cleaning efficiency measured from optical microscopy imagesp. 214
3.2.1. Particle de-agglomeration and removalp. 214
3.2.2. Laser cleaning efficiency as a function of pulse fluencep. 218
3.2.3. Laser cleaning threshold fluence measurementp. 220
4. Concluding remarksp. 222
Acknowledgmentsp. 223
Referencesp. 223
Chapter 5. Liquid-Assisted Pulsed Laser Cleaning with Near Infrared and Ultraviolet-Pulsed Lasersp. 229
1. Introductionp. 229
2. Experimentsp. 232
2.1. Laser cleaning system and optical diagnosticsp. 232
2.2. Operation parameters and experimental proceduresp. 236
3. Experimental resultsp. 236
3.1. Excimer laser cleaningp. 236
3.2. Nd: YAG laser cleaningp. 237
3.3. Summary of cleaning resultsp. 240
4. Physical mechanismsp. 241
4.1. In-situ monitoring of reflectance and visualizationp. 241
4.2. Temperature, pressure, and bubble dynamicsp. 242
5. Conclusionp. 252
Acknowledgmentsp. 252
Referencesp. 252
Chapter 6. Steam Laser Cleaning of Silicon Wafers: Laser Induced Bubble Nucleation and Efficiency Measurementsp. 255
1. Introductionp. 256
2. Experimentalp. 257
2.1. Sample preparationp. 258
2.2. Laser sourcesp. 259
2.3. Surface plasmon probe and optical reflectance probep. 260
2.4. Scattered light probep. 262
2.5. Evaluation of the cleaning efficiencyp. 262
2.6. Determination of laser fluencep. 263
3. Laser induced bubble nucleation and pressure generationp. 264
3.1. Theoretical backgroundp. 265
3.1.1. Kinetic limit of superheatingp. 265
3.1.2. Nucleation theoryp. 267
3.2. Experiments on metal filmsp. 272
3.2.1. Detection of bubble nucleation via SPPp. 272
3.3. Bubble nucleation on silicon wafersp. 282
3.3.1. Water at smooth silicon wafersp. 283
3.3.2. Water at structured silicon substratesp. 289
3.3.3. IPA on smooth silicon wafersp. 292
3.4. Heat transfer coefficientp. 292
4. Removal of particles on surfaces via laser induced bubble nucleation: steam laser cleaningp. 294
4.1. Efficiency measurementsp. 296
4.1.1. Dependence on the number of applied laser pulsesp. 296
4.1.2. Dependence on the laser fluence and variation on the particle sizep. 298
4.2. Discussion and concluding remarksp. 300
Acknowledgmentsp. 304
Referencesp. 305
Chapter 7. Physical Mechanisms of Laser Cleaningp. 311
1. Introductionp. 311
2. Laser cleaning of the solid surface from particlesp. 312
2.1. Dry laser cleaningp. 313
2.1.1. The cleaning forcep. 313
2.1.2. Surface cleaning conditionp. 316
2.1.3. Dry laser cleaning in the multipulse regimep. 316
2.1.4. Discussionp. 318
2.2. Steam laser cleaningp. 319
2.2.1. Absorbing particles at the transparent substratep. 319
2.2.2. Transparent particles at the absorbing substratep. 321
2.2.3. Absorbing particles at the absorbing substratep. 326
2.2.4. Discussionp. 327
3. Laser cleaning of the solid surface from filmsp. 327
3.1. Laser cleaning by buckling mechanismp. 328
3.1.1. The main regularities and regimes of film bucklingp. 329
3.1.2. Film ablation without melting before separation of the film fragmentp. 331
3.1.3. Ablation of the melting filmp. 331
3.1.4. Film degradationp. 334
3.2. Laser cleaning by film shaking-offp. 337
3.3. The conditions of action of shaking-off and buckling mechanisms of film ablationp. 337
3.4. Other mechanisms of laser cleaning of solid surfaces from filmsp. 338
4. Conclusionp. 339
Acknowledgmentsp. 340
Referencesp. 340
Part 4. Laser Cleaning of Artworks
Chapter 8. Laser Ablation in Cleaning of Artworksp. 343
1. Introductionp. 343
2. Laser ablation of complex polymerized materialsp. 344
2.1. Optimization of laser parametersp. 344
2.1.1. Ablation efficiency studiesp. 346
2.1.2. Light transmission studiesp. 353
2.1.3. Chemical alteration of substratep. 355
2.2. Laser-assisted removal of aged varnish from paintingsp. 358
2.3. Laser-assisted removal of paint from composite materialsp. 365
3. Laser divestment of encrustationp. 370
3.1. Major operative mechanisms and associated optical phenomenap. 370
3.2. Removal of encrustation--test case studiesp. 380
4. Conclusionsp. 384
Acknowledgmentsp. 385
Referencesp. 385
Chapter 9. On the Theory of Discoloration Effect in Pigments at Laser Cleaningp. 393
1. Introductionp. 393
2. The thermal ablation modelp. 395
3. Method of momentsp. 398
4. Thermal field within the ablated material. Numerical resultsp. 402
5. Kinetics of phase transition and surface modificationp. 405
Acknowledgmentsp. 411
Referencesp. 411
Part 5. Applications of Laser Cleaning
Chapter 10. Cleaning for Field Emitter Arraysp. 417
1. Introductionp. 417
2. Experimental proceduresp. 419
3. Laser light irradiationp. 420
3.1. Laser irradiation modesp. 420
3.1.1. Laser irradiation without field emissionp. 420
3.1.2. Laser irradiation with field emissionp. 422
3.2. IR and visible laser light ([lambda] = 1047 and 523.5 nm) irradiationp. 422
3.3. UV laser light ([lambda] = 349 nm) irradiationp. 422
3.4. UV laser light ([lambda] = 262 nm) irradiationp. 429
4. Conclusionsp. 430
Acknowledgmentsp. 431
Referencesp. 431
Chapter 11. Laser Cleaning of Organic Contamination on Microelectronic Devices and Process Real-Time Monitoringp. 433
1. Introductionp. 436
2. Experimental setupp. 438
3. Results and discussionp. 438
3.1. Laser cleaning of flexible circuit for inkjet printer cartridgep. 438
3.2. Laser deflashing of IC packagesp. 441
3.3. Signal generation and diagnostics during the laser cleaningp. 448
3.3.1. Audible acoustic wave generationp. 451
3.3.2. Diagnostics of plasma-induced electric fieldp. 456
3.3.3. Detection of plasma optical signalp. 457
4. Conclusionsp. 460
Acknowledgmentsp. 461
Referencesp. 461
Subject Indexp. 465